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ABSTRACT
Deep Neural Networks (DNNs) have revolutionized the field of
Machine Learning and consequently countless fields such as com-
puter vision, natural language processing, and autonomous vehi-
cles. While these networks achieve unparalleled performance in
complex tasks, the black-box nature of DNNs introduce concerns
regarding interpretability of decision-making, prediction biases,
and security against adversarial attacks. Researchers and practi-
tioners have looked to employ DNN verification tools to mitigate
these concerns by evaluating the robustness of networks to expose
vulnerabilities in models. However, verifiers trail in development
behind cutting-edge models due to the rapidly evolving field of
DNN research. Looking to close this gap, there have been growing
efforts to improve verification tools by determining their applica-
tions and shortcomings. This paper aims to take a step toward better
understanding the strengths and weaknesses of DNN verifiers when
applied to a variety of network architectures. In this paper, sev-
eral DNNs are selected as benchmarks to determine the effects of
network architectures and robustness properties on network verifi-
cation. State-of-the-art DNN verification tools, 𝛼-𝛽-CROWN and
NeuralSAT, are utilized to verify benchmarks and are compared in
their abilities to verify networks effectively and efficiently. Parame-
ters of networks such as the number of hidden layers, activation
functions, layer types, and degree of perturbation are varied to
study their relationships with network verification and verification
time.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are ubiquitous in today’s world due
to their ability to perform complex tasks and have been increasingly
integrated in safety critical systems such as autonomous vehicles,
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Figure 1: An adversarial example applied to GoogLeNet on
ImageNet published by Goodfellow et al. [10]

medical diagnosis tools, aviation systems, and power grid manage-
ment systems. In such systems, even the smallest accidents and
failures can have severe consequences [28]. To prevent this, clas-
sically programmed components (non-machine learning systems)
are tested rigorously with a variety of software analysis tools that
have been developed over several decades. Machine learning (ML),
on the other hand, is a relatively new paradigm and is a rapidly
evolving field of research where major improvements are made
each year [29]. This trend is especially seen in DNN research where
cutting edge DNNs are developed and deployed at a faster rate than
the development of formal DNN verification techniques. The lag be-
tween development and testing exacerbates existing concerns with
DNNs such as the transparency of decision making, bias mitigation,
and security against malicious attacks [11].

DNN verification has become an increasingly important field of
research as it aims to address the need for reliable, trustworthy, and
secure ML models. One of the primary focuses of DNN verification
is demonstrating the network’s robustness to adversarial attacks.
An adversarial attack is when an input is intentionally crafted in
such a way that maliciously deceives the network. Discovering
adversarial examples while testing a DNN exposes the network’s
blind spots in the data distribution, and the generation of adversarial
examples has even been integrated into model training to produce
more robust networks [1].

There are many examples of adversarial attacks. A well-known
example in the literature is shown in Figure 1 which was published
by Goodfellow et al. [10]. In this example, an image of a panda is
perturbed by adding random noise. The perturbation causes the
input image to cross the decision boundary of the model and get
classified as a gibbon despite still being an image of a panda. Figure
2 shows an example of an adversarial attack in a safety critical
system which was published by Metzen et al. [12]. In this example,
an image of pedestrians on a street is perturbed, and the model
classifies this modification as an empty street. The consequences
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Figure 2: An adversarial example in a safety critical system
published by Metzen et al. [12]

of a classification error in this system would be far greater, high-
lighting the importance of DNN verification tools to expose these
adversarial examples.

In this paper, we make the following contributions.

(1) Select a set of networks as benchmarks that represent a vari-
ety of DNN architectures and that facilitate isolated analysis
of network parameters.

(2) Evaluate the effects of network architectures and robustness
properties on the network verification. More specifically,
analyze the effects of the number of hidden layers, activation
functions, and layer types, and degree of perturbation on the
verification result and verification time.

(3) Compare the robustness verification performances of state-
of-the-art DNN verifiers, 𝛼-𝛽-CROWN [27] and NeuralSAT,
[7] on the benchmarks in regards to verification result and
verification time.

2 BACKGROUND
There are a variety of properties that can be verified by these DNN
verifiers. These include but are not limited to temporal, fairness,
robustness, and adversarial example detection. Temporal checks
that the network responds to any data distribution shift that may
happen as a result of time. Fairness ensures that protected attributes
such as race, age, gender, or sexual orientation do not influence
predictions with equal metrics. These two are not the focus of
this work but illustrate the aspects of models that developers must
consider. Robustness and adversarial example detection are defined
by the model’s ability to maintain accurate performance when
given noise or perturbations to the image. We expect that the model
predicts the same label for two inputs that hardly differ. If a model is
not robust, it can be exploited with adversarial examples. Detecting
these examples is not usually handled by the model itself. Rather
a part of the verification process is identifying instances that are
considered adversarial based on the amount of noise added. Our
goal is to ensure that model can handle any noise from real world
conditions or adversarial examples.

A robust model ensures that the model can both generalize well
to unseen data and not be sensitive to environmental changes dur-
ing inference. We define a value 𝜀 to determine the robustness. This
𝜀 can be seen as the radius of a ball that extends in all directions
of the input dimensional space. Shown in Figure 3 [15], the blue
point represents our input in space. 𝜀 extends the value of the point
to create a ball where the input can exist in. For 𝜀 << 1, this win-
dow is very tight and represents a trivial problem to verify as it is
extremely close to the original input. As we increase 𝜀, the prob-
lem becomes harder as the verifier must explore this new input
space. Eventually, 𝜀 reaches a point where it crosses the decision
boundary causing an incorrect prediction. This is the orange point.
The verifiers can then use attack strategies to easily identify those
adversarial examples. Verifying robustness ensures that our model
is not susceptible to these small perturbations in the input.

Figure 3: 𝜀-radius Ball for Robustness [15]

For this work, we picked 𝛼-𝛽-CROWN [27], [23], [18], [24], [20],
[26], [25], [19], [14] and NeuralSAT [7], [8] as the two verifiers to
analyze a variety of benchmarks on. We chose these specifically
because they both provide GPU acceleration support and performed
well on related verification competitions (𝛼-𝛽-CROWN - 1st, Neu-
ralSAT - 4th at VNNComp 2023). They offer two different forms
of verification, the former having a large learning curve and the
former being easy to use right away.

𝛼-𝛽-CROWN is a powerful and efficient linear bound propaga-
tion framework with GPU optimized relaxation and parallel branch
and bound methods. The property constraints are defined accord-
ing to the input, per pixel for an image. These constraints form
linear inequalities which are propagated backwards through the
network. 𝛼-𝛽-CROWN provides a lot of efficient support for these
hard tasks. However, it requires a lot of complex parameter tun-
ing for its bound relaxation, BaB splitting, attack iteration, and
about 200+ others. A poorly tuned configuration can cause the
performance of 𝛼-𝛽-CROWN to dip reducing all of its benefits.

In contrast, NeuralSAT offers an out-the-box approach which
takes the network and the input/output constraints representing
the property to be verified. This is achieved by using Boolean ab-
straction of a propositional formula representing neuron activation
status. It will then search for truth assignments in the input space.
A general DPLL approach is taken by deciding an assignment to
the boolean variables whose constraints are propagated for the sat-
isfiability to be checked. NeuralSAT offers a lower barrier of entry
which can generalize better to unseen models. This can prompt
developers to utilize these tools.
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One major limitation of the current verifiers is their limited
network architecture support. So far, fully connected (FC), convo-
lutional (Conv), pooling, residual connections, and batch normal-
ization are the only supported layer types. This is because these
layers differ in the way that they learn their parameters. FC layers
use neurons with weighted edges and the activation functions to
feed information forward. Convolution layers performs a convolu-
tion with a learnable filter which isn’t a direct edge. As well, the
activation functions act as another cosntraint to what network can
be supported. Most DNN have historically used a mix of ReLUs and
non-piecewise linear functions. Verifiers first only supported ReLUs
due to non-ReLU’s bound computation complexity making the ver-
ification too hard. Since then sigmoid, tanh, and other trigometric
activation functions have gained support at the cost of verification
time and complexity. These two parts cause a scabaility challenge
that verifiers must face. The verifiers must be able to handle large
volumes of data that typically exist in high dimensional input spaces.
This create a large search and verify problem. Additionally, as more
modern model components are added that take longer to train, the
verification process becomes more complex and longer. Finding
good benchmarks that add new network architectures is vital to
accelerating the growth of verification.

3 RELATEDWORK
A wide range of DNN verification tools have been developed to
check for adversarial robustness properties, each with a different
methodology and specialization. However, the growing number
of tools has made it increasingly difficult for ML developers to
decide which tool to use for their application. The International
Verification of Neural Networks Competition (VNN-COMP) was
introduced in 2020 to address this problem and facilitate a fair and
objective comparison of DNN verification tools. The competition
achieved this by standardizing a set of diverse benchmarks networks
proposed by participants and industry practitioners that would
expose strengths and weaknesses in state-of-the-art DNN verifiers.
Bak et al. state that the performance of these verification tools are
evaluated on a set of equally weighted benchmarks, each containing
instances which are each comprised of a trained neural network,
a timeout, and pre- and post-conditions. The scores for verifiers
were computed based on the number of adversarial instances that
were correctly held, correctly violated, or incorrectly labeled [2].

Brix et al. note that benchmark networks from the past four
VNN-COMPs have evolved significantly, demonstrating the grow-
ing complexity of networks and broadening range of applications.
In VNN-COMP 2020, three benchmark categories were used: fully
connected (FC) networks with ReLU activations based on ACAS
Xu and MNIST, FC networks with sigmoid and tanh activation
functions based on MNIST, and convolutional networks based on
MNIST and CIFAR10. In 2021, the competition added a network
with max-pooling layers based on MNIST, residual networks based
on CIFAR10, and large networks with sparse matricies based on
database indexing. VNN-COMP 2022 saw the addition of FC net-
works with ReLU activations on reinforcement tasks, FC network
in TILL format, complex U-Net networks with average-pooling ad
softmax based on image segmentation as well as additional bench-
marks for convolutional networks and residual networks. From

having five simple FC and convolution network benchmarks in
2020 to having 12 diverse and complex benchmarks with up to 140
million parameters in 2022, the first three iterations of VNN-COMP
showed significant development in benchmark selection [6]. Fur-
thermore, VNN-COMP 2023 introduced a generative network and
benchmarks with vision transformers and batch normalization lay-
ers. The applications of benchmarks put forth in VNN-COMP have
also broadened. At its inception, most benchmarks had applications
in image classification, but the 2024 benchmarks comprise of di-
verse applications from image generation to vision to power control
[5]. Brix et al. state the challenge of creating good benchmarks: they
must pushed the bounds of verification tools with novel network
architectures or layers, and they must also be easy enough to be
solved by all competing verification tools but not so difficult that
no tool can solve them [6].

During the development of 𝛼-𝛽-CROWN, the authors have fo-
cused on an evolving set of benchmarks. In the first iteration of
this verifier in 2018, CROWN, Zhang et al. evaluate the tool on
multi-layer perceptron (MLP) models trained on MNIST and CI-
FAR10 datasets using activation functions including ReLU, tanh,
sigmoid, and arctan [27]. When Xu et al. created 𝛼-CROWN in 2021,
an optimized version with improved intermediate layer bounds and
final layer bounds, the tool was evaluated on the CIFAR10 dataset
with three neural networks: Base, Wide, and Deep [24]. In 2021,
Wang et al. developed 𝛽-CROWN which integrated ReLU split con-
straints in branch and bound into the original CROWN bound
propagation procedure, testing it on the same benchmarks as Xu
et al [20]. In 2022, Zhang et al. introduced another variant, GCP-
CROWN, which increased the efficiency of bound propagation by
using general cutting plane methods to strengthen bound tightness
[25]. GCP-CROWN was largely evaluated on the VNN-COMP 2021
benchmarks, which included FC networks, ResNet, and Convolu-
tional networks [2].

A similar selection of benchmarks was used during the devel-
opment of NeuralSAT. In 2023, Duong et al. adapted the DPLL(T)
algorithm in modern SMT solvers to develop NeuralSAT, which
was tested on four benchmarks from VNN-COMP 2022: ACAS Xu,
MNISTFC, CIFAR2020, and RESNET_A/B [7]. NeuralSAT was also
tested on another benchmark, CIFAR_GDVB, which utilized the
systematic DNN verification benchmark generator GDVB [22] to
create 45 different DNNs using a single CIFAR network as a seed
network. GDVB systematically varies the network architecture
such as the number of layers and neurons per layer to generate new
variants [7]. In 2024, Duong et al. made improvements to Neural-
SAT by leveraging the linear behavior of neurons at intermediates
states during verification computations, reducing combinatorial
complexity. This tool was experimented on the same four bench-
marks from VNN-COMP 2022: ACAS Xu, MNISTFC, CIFAR2020,
and RESNET_A/B. In addition, the GDVB was used again to gener-
ate 38 networks from a single MNIST network with 3 layers, each
with 1024 neurons [8].

As illustrated by Brix et al., the diverse benchmarks used in
VNN-COMPs reflect the wide range of DNN architectures and ap-
plications. Also, allowing participating tool authors and industry
practitioners to submit networks keeps the pool of benchmarks
recent and relevant to safety critical applications [6]. More so than
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a set of networks, Bak et al. mentions that these benchmarks stan-
dardizes the evaluation of state-of-the-art DNN verification tools
[2]. This standardization invites newer DNN verifiers utilizing novel
techniques to experiment on the same benchmarks that are used
to evaluate state-of-the-art verifiers. As a result, the development
of new and leading DNN verification tools are significantly based
off of benchmarks from VNN-COMPs as seen in the development
of 𝛼-𝛽-CROWN and NeuralSAT by Zhang et al. and Duong et al.
respectively [27] [7].

4 METHODOLOGY
4.1 Benchmarks
We aimed to include a variety of benchmarks that stress the verifiers
and contained different network properties. Our selection criteria
followed as such

• Recent models. We aimed to include models recently devel-
oped to track the progress of what the verifiers can support
and show results.

• The network architecture needs to be supported by the ver-
ifiers. All layers and activation functions included need to
be implemented by both verifiers. In order for the verifier to
produce results for the best trained model, we didn’t want
to delete any layers. We decided that tweaking the network
architecture in any way would invalidate the benchmark as .

• Multiple network architectures and properties are repre-
sented. We wish to include a different number of hidden
layers, different layer types, different activation functions,
and how the layers and activations are connected. The bench-
marks that we selected give at least two networks of com-
parison for each network change.

A general overview of each benchmark is included in Table 1. This
includes the number of hidden layers, the activation functions that
are used, the various layer types, and the pretrained accuracy for
each benchmark.

4.1.1 MNISTx2. [3]
Motivation: The MNIST dataset, while seemingly simple, poses

a significant challenge for verifying neural networks. Its simplicity,
consisting of 28x28 pixel black and white images of handwritten
digits, makes it an ideal starting point for evaluating basic neural
network architectures and the verifiers’ abilities to correctly verify
images. Our chosen architecture, comprising just 2 fully connected
hidden layers with ReLU activation functions, serves as the baseline
benchmark for our study. Both of our verifiers were easily able to
verify and falsify instances for this model in a minimal amount of
time.

This dataset serves as a good benchmark due to the inclusion of a
wide range of writing styles, sizes, and shapes causing variability in
the digits. This variability impacts the model’s ability to generalize
well to unseen data. The range of writing styles may also result
in ambiguity of the digit, where a messy ‘7’ may resemble a ‘1’.
This ambiguity is an important aspect of learning robust features
for the model which the verifiers are able to test in more detail.
As well, the noise and distortion in the images can mimic real life
conditions in which the model is placed. Lighting, shadows, or any
imperfections from the image need to be handled by the model.

Verifiers can help identify instances where imperfections lead to
incorrect predictions.

Overall, these variations and noise factors stand as a good test
for the robustness of models. These challenges provide benefit to
our verification technique as we are focused on adding artificial
noise to these images. The performance and ability to correctly
verify and unverify instances can provide insight into improving
the robustness of the network architecture. Verifying the neural
network before deploying it can ensure that we are receiving correct
predictions in light of any possible imperfections. Aswell, themodel
won’t be susceptible to adversarial attacks from attackers.

Network: Takes in a (28x28) black and white image of a hand-
written digit that is flatten to a 784 pixel tensor. The values are
passed through 2 fully connected hidden layers with ReLU activa-
tions connecting them. An output in range of 0-9 predicting the
digit is given.

4.1.2 MNISTx6. [3]
Motivation: Our first point of comparison is how the number

of hidden layers in a model affects the verification process.
Typically, increasing the hidden layer amount leads to more rep-
resentation, better generalization, and increased expressiveness.
These can aid the model when more distinct decision boundaries
are required or can increase performance on unseen data. This
network change can help alleviate some of the challenges that
MNISTx2 faces. The robustness of the model can increase and more
reliable predictions are made. However, this causes the verifying
task to become harder.

This increased hidden layer network serves as analysis into how
this can cause the branch and bound methods to take a lot more
time to cover all of the neurons in the network. The time to verify
or falsify an instance is shown to takes longer for both verifier. The
verifying task becomes harder to cover more layers and neurons
illustrating a potential drawback of BaB methods.

Network: Similar to MNISTx2. Takes in a (28x28) black and
white image of a handwritten digit that is flatten to a 784 pixel
tensor. The values are passed through 6 fully connected hidden
layers with ReLU activations connecting them. An output in range
of 0-9 predicting the digit is given.

4.1.3 Eran for MNIST. [17]
Motivation: The two previous MNIST benchmarks focused on

ReLU activation functions. Those are piecewise linear activation
functions whereas some more modern network architectures in-
clude non-piecewise linear functions. This includes Sigmoid, Tanh,
or other trigonometric related functions. This acts as our second
point of comparison, how the activation function will affect
the verification process. ReLU offer computationally simple pro-
cess but are unbounded. Non-piecewise functions can enhance the
smoothness of optimization functions.

Network: This benchmark builds off of the previous 6 hidden
layer MNIST network. It also takes in a (28x28) black and white
image of a handwritten digit that is flatten to a 784 pixel tensor. The
image is given to the 6 fully connected hidden layers with a width
of 200 neurons. Now the model will use the Sigmoid1 activation

1Any non-piecewise activation function may be used
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MNISTx2 MNIST x6 ERAN CIFAR GTSRB
Number of Hidden Layers 2 6 6 14 13
Activation Function(s) ReLU ReLU Sigmoid ReLU Sign + SoftMax

Layer Type(s) FC FC FC ResNet QConv + FC
Pretrained Accuracy 98.0% 96.8% 97.3% 69.2% 81.5%
Input Dimension 28x28 28x28 28x28 32x32 30x30
Output Dimension 10 10 10 10 43

Table 1: Overview of All Benchmarks

function between the layers. The MNIST digit prediction is given
as output.

4.1.4 CIFAR10 ResNet. [21]
Motivation: All of the previous benchmarks were just fully

connected layers with various adjustments made to the number of
layers and activation functions. However, verifiers should be able to
handle more generic architectures, such as ResNet, which exist in
more practical prediction scenarios. ResNet indicates the first com-
plex network that we analyze and is the third point of comparison,
howmore complex layer types affect the verification process.
ResNet is a step to more modern models and the techniques that
make image classification a more efficient process with increased
performance.

The convolutional layers introduce a new form of information
learning through their convolution filters. Verifiers need to handle
different forms of parameter learning introduced in task specific
layer types. This will enhance the verifier generalizability to new
layers so that we do not lag behind model development.

Network: The ResNet structure with 2 residual blocks was used.
The model takes in a (32x32) RGB image of an object. These pixels
are passed through 5 convolutional layers and 2 fully connected
layers with ReLU activation functions between residual blocks. An
index of the predicted object is given.

4.1.5 German Traffic Sign Recognition Benchmark (GTSRB). [16]
Motivation: The German Traffic Sign Recognition Benchmark

plays a crucial role in extending the verification process to safety
critical application domains. Traffic signs are necessary for ensuring
road safety andmanaging traffic flow. The recognition of these signs
are vital for recent developments in autonomous driving vehicles
that make decisions based on the signs that are recognized. For
example, interpreting a stop sign as a speed limit sign can cause
major harm when the person is unaware of their surroundings.

This benchmark and the challenges showcase the importance of
verifying the model predictions in real time. Driving occurs at all
points of the day where lighting, weather impacting the sensors,
and regular image noise can impact the prediction. These models
need to tuned across various regions and also verified to ensure
safety. The safety critical domain makes this verification process
even more important.

Network: Figure 4 outlines themore complexmodel architecture
that was trained using the GTSRB. A Binary neural network (BNN)
was used due to promise in computional and power consumption
efficiency for resource constrained systems. QConvolutional layers,
which binarize the convolutional layers, are used with the Sign
activation function connnecting them. After 2 convolutions, a fully

Figure 4: Model architecture for GTRSB dataset

connected and softmax layer are used to output the identified traffic
sign. A (30x30) image is used with a range of 43 output classes of
traffic signs. The model was trained and test on the 43 classes which
only include the German signs. The other Belgian or Chinese traffic
sign datasets were not included in the model that we tested and
verified.

4.2 Generating Robustness Properties
In this work, we focused exclusively on local robustness properties.
These robustness properties are defined as perturbations to each
pixel in an image. Images are usually 2d sets of 3 RGB values which
are set within [0, 255]. (The MNIST dataset images are only these
2d sets of one black and white pixel scaled between [0, 255]. The
CIFAR and GTSRB are RGB so this is represented as a 3-dimensional
array of pixels.). Part of preprocessing the data includes normalizing
these pixels by uniformly scaling the image down so that the pixel
are represented as floats from [0, 1].

From here, we can define a 𝜀 value which indicates the 𝜀 ball
radius for that pixel at which it will be verified. The pixel is then
given a lower and upper bound by simply subtracting and adding
𝜀 to the pixel, respectively. We clip the pixel to [0, 1] in order to
ensure that verification stays in range. Now that we have the lower
and upper bound defined, the constraint is given for that pixel such
that we do not exceed either bound. This process is repeated for all
pixels within an image to define a set of constraints over all pixels.
In addition to these pixel constraints, the output constraints are
defined from the correct label. The instance should not exist with a
different label inside of the 𝜀 space. All constraints are put in the
standard vnnlib format which can then be given to the verifier to
determine if the instance is sat/unsat.

4.3 Sweeping-𝜀
The main method that we used to identify verifier abilities for
a given benchmark was a sweeping-𝜀 approach. As depicted in
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Algorithm 1, we choose 𝐼 number of images chosen from the bench-
mark’s dataset that are correctly predicted using the Onnx model
O. For all 𝐼 images, a new instance 𝑖 is created with a 𝜀 value. These
𝜀 are uniformly spread out from the starting 𝜀 to the ending 𝜀 for a
determined 𝜀 count. For each 𝜀 𝑗 we’ll create a new instance of image
𝑖 𝑗 that uses the property as described in Section 4.2. Now that all
properties are generated, the verifier can be run on instance 𝑖 𝑗 . The
verifier would either return unsat (the instance was verified), sat
(the instance was falsified or considered an adversarial example),
or time out (the instance was being verified for too long). This time
out was considered an unverified instance for our method because
that means the problem was too hard to verify. A time out does not
explicitly mean that the instance is an adversarial example but the
instance became too hard.

Data: Onnx Model O, Verifier, Timeout 𝑇
Generate 𝐼 number of correctly predicted images using O
for 𝑖 ∈ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do

for 𝜀 ∈ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝜀𝑠𝑡𝑎𝑟𝑡 , 𝜀𝑒𝑛𝑑 ) do
Generate local robustness property 𝑝 from 𝜀

Run verifier on property 𝑝 using O for max of 𝑇
seconds

end
end

Algorithm 1: Conducting Sweeping-𝜀 Overview

4.4 Metrics
We define three new metrics to determine the effectiveness of the
verifier for a associated dataset.

(1) 𝜀-Intersection: This occurs at the 𝜀 value which the num-
ber of verified instances equals that of unverified instances.
As timeouts are considered unverified, this point indicates
the level of perturbation at which the verifying problem is
becoming too hard for the verifiers.

(2) Time Inflection: The time inflection is when our average
time per instance inflects and begins to decrease. This is
typically reached when all of the instances are timed out or
unverified. This illustrates that the problems are becoming
easily unverified due to the excessive noise.

(3) Unverified Rate of Change: This value is defined as the rate
of change of the decline from mostly all verified to mostly
all unverified instances. This value goes together with our
𝜀-intersection and gives information to the user if a network
has a hard decision boundary. A high rate of change tells us
that just adding a little more noise will cause the instances
to more easily be unverified.

Each benchmark generates its own unique set of properties that
were fed to both verifiers. As the benchmarks varied in their com-
plexity, we focused on showcasing the key metrics for each bench-
mark. Each benchmark was given a timeout that is lower than
those used by the VNNCOMP. We decided these timeouts were
necessary due to the computational complexity that these verifiers
had at some 𝜀 values. We found this to be a necessary trade-off to
analyze more instances per 𝜀. Further, we wanted the 𝜀-intersection
to not exist at one extreme, for both the unverified and verified

number of instances to plateau to all instances and no instances,
respectively, and the time inflection point to exist. Thus, we set up
each benchmark with different experimental settings. They mostly
influence our range of 𝜀 which is seen in the Results section and
analyzed in the Discussion section. These are outlined in Table 2.

5 RESULTS
5.1 MNIST
5.1.1 MNISTx2. Figure 5 shows 𝛼-𝛽-CROWN verifying MNIST
classification with a 2 hidden layers FFC + ReLU using a total of 40
instances. Figure 6 shows NeuralSAT verifying the same benchmark.
The 𝜀-intersection of both 𝛼-𝛽-CROWN and NeuralSAT occurs be-
tween 𝜀=0.0267 and 𝜀=0.0356 (increments of 𝜀 were tested so unless
the number of verified instances equals the number of unverified
instances at one of the 𝜀 values we test, the exact 𝜀-intersection
cannot be determined and an 𝜀 range is given instead). This indi-
cates that both verifiers found similar levels for perturbation before
instances would be considered unverified. However, the verification
time for each verifier vary. 𝛼-𝛽-CROWN took a maximum time of
1.2s to verify all instances while NeuralSAT took more than 2s on
most instances and took a maximum of 9s. In addition, the verifi-
cation time for 𝛼-𝛽-CROWN peaks near the 𝜀-intersection while
the verification time for NeuralSAT peaks after the 𝜀-intersection
when it handles more unverified instances. It is also important
to note the time scale of the verification time for 𝛼-𝛽-CROWN
since its time plot takes a seemingly uncharacteristic sharp dip near
the 𝜀-intersection. Since the verification times of this graph are all
quite low, small differences are magnified, so this dip may not be
significant.

Figure 5: 𝛼-𝛽-CROWN on MNISTx2 (MNIST Classification
with 2 Hidden Layer FFC + ReLU)

5.1.2 MNISTx6. Figure 7 shows 𝛼-𝛽-CROWN verifying MNIST
classification with a 6 hidden layers FFC + ReLU using a total of 40
instances. Figure 8 shows NeuralSAT verifying the same benchmark.
Both verifiers perform similarly on this benchmark as they share the
same 𝜀-intersection, 𝜀=0.0267, demonstrating that both tools found
the same level of perturbation for the instances before they became
unverified. The verification times of both verifiers are similar, with
both verifiers’ times steadily increasing at 𝜀 = 0.013 when the
numbered of unverified instances started to increases, peaking at
around 80s after the 𝜀-intersection, and then making a gradual
decline as more unverified instances are handled.
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MNISTx2 MNIST x6 ERAN CIFAR GTSRB
Number of Instances 40 40 50 50 40

Starting 𝜀 .01
255

.01
255

.01
255

.01
255

.01
255

Ending 𝜀 .08 + .01
255 .08 + .01

255 .04 + .01
255 .025 + .01

255 .008 + .01
255

𝜀 count 15 10 10 10 10
Timeout (seconds) 120 120 180 120 240

Table 2: Benchmark Experimentation Settings

Figure 6: NeuralSAT on MNISTx2 (MNIST Classification with
2 Hidden Layer FFC + ReLU)

Figure 7: 𝛼-𝛽-CROWN on MNISTx6 (MNIST Classification
with 6 Hidden Layer FFC + ReLU)

Figure 8: NeuralSAT on MNISTx6 (MNIST Classification with
6 Hidden Layer FFC + ReLU)

5.1.3 ERAN. Figure 9 shows 𝛼-𝛽-CROWN verifying MNIST classi-
fication with a 6 hidden layers FFC + Sigmoid using a total of 50 in-
stances. Figure 10 shows NeuralSAT verifying the same benchmark.
Both tools perform similarly on this benchmark as the 𝜀-intersection
occurs between 𝜀=0.0133 and 𝜀=0.0178. The verification times are
similar for both verifiers as the shape of the time plot matches the
shape of the unverified instances plot. At 𝜀 values where there are
more unverified instances, a majority of the computation time is at
the specified 180s timeout, indicating that many of these instances
were classified as unverified due to the timeout on both verifiers.

Figure 9: 𝛼-𝛽-CROWN on ERAN (MNIST Classification with
6 Hidden Layer FFC + Sigmoid)

Figure 10: NeuralSAT on ERAN (MNIST Classification with 6
Hidden Layer FFC + Sigmoid)

5.2 CIFAR
Figure 11 shows the 𝛼-𝛽-CROWN verification of the CIFAR10
dataset using the ResNet2b structure. A total of 50 instances were
used. Figure 12 shows NeuralSAT verifying the same benchmark.



, , Srikar Chittari and Scott Sikorski

Both verifiers performed most equally on this benchmark, sharing
a 𝜀-intersection, 𝜀 ≈.009. The unverified rate of change and veri-
fication time rise remained similar between verifiers for ResNet.
The ResNet architecture results differ from the previous MNIST
results in that the number of unverified instances linearly increased.
Before, this would be an exponential increase until all instances
were unverified causing a plateau. The verifier more quickly made
jumps to unverifying all the instances. We theorize that if the 𝜀
range was shrunk from 0 to .02 that a more exponential increase
would be observed from both verifiers.

The observed time inflection point occurred at the time where
almost all of the instances were deemed falsified. 𝛼-𝛽-CROWN
showed a larger magnitude decrease in time taken per instances
after this inflection point. This illustrates that 𝛼-𝛽-CROWN was
able to falsified more of the highly perturbed images. NeuralSAT
was still stuck trying to verify more of those.

Interestingly, both verifiers found 10 instances that were consid-
ered adversarial attacks at the beginning where 𝜀 = .01

255 . This can
account for an earlier 𝜀-intersection point. We believe that even
though the onnx model was able to correctly predict the instances
when we were loading the data, the instance is extremely close
to the decision boundary. It could be the case that the model was
between two classifications with almost equal probabilities. Even
with such a tight 𝜀 window, this caused the classification to flip to
the other high probability, signifying an adversarial example. It’s
possible that the model was too weak and not accurate enough to
ensure that verification was useful.

Figure 11: 𝛼-𝛽-CROWN on CIFAR Classification with ResNet

Figure 12: NeuralSAT on CIFAR Classification with ResNet

5.3 GTSRB
Figure 13 shows 𝛼-𝛽-CROWN verifying the QConv 4 architecture
with the GTRSB dataset for a total of 40 instances. The NeuralSAT
verification of the same instances is shown in Figure 14. The verifier
diverged in performance more in this benchmark as we let this
harder verification task run for longer. 𝛼-𝛽-CROWN showed to
verify more instances in the 𝜀’s before the plateau and reached the
plateau at 𝜀 = .0044 whereas NeuralSAT reached it at 𝜀 = .0035.
This ultimaely came down to one more instance. Both verifiers had
a similar decrease in time per instance as it reached the plateau.
At the plateau, NeuralSAT was more easily to falsify adversarial
examples shown by the lower time at the higher 𝜀 values.

Like the CIFAR dataset, 5 of the 40 instances were initially con-
sidered unverified within the tight starting 𝜀. We hypothesize that
this is because the architecture of model is so complex and its pre-
trained accuracy is already low. These two factors may cause any
sort of change in the pixels to flip the bit which produces a falsi-
fied instance. The major difference seen with this dataset was that
verification time was extremely high and at its peak to begin with.
This showcases the difficulty in verifying these larger and more
complex models at any perturbation value.

Figure 13: 𝛼-𝛽-CROWN on GTSRB Classification with FC,
ReLU, QConv, Sign

Figure 14: NeuralSAT onGTSRBClassificationwith FC, ReLU,
QConv, Sign
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6 DISCUSSION
6.1 Number of Hidden Layers
𝛼-𝛽-CROWN and NeuralSAT were evaluated on MNISTx2 and
MNISTx6, which have 2 hidden layers and 6 hidden layers in their
networks respectively. These benchmarks demonstrate how the
number of hidden layers in a network affects the 𝜀-intersection
found by the verifiers, unverified rate of change, and verification
time. The 𝜀-intersection of MNISTx2 was between 𝜀=0.0267 and
𝜀=0.0356 and the 𝜀-intersection of MNISTx6 was 𝜀=0.0267. Based
on these results, the 𝜀-intersection decreases when the number of
hidden layers increases. More hidden layers in a network produces
more parameters for the model to train on and places the model in
a more complex hypothesis class. While networks with more layers
can capture more complex patterns in the data, having significantly
more parameters can make complex networks more susceptible
to noise than simpler networks. The increased sensitivity to noise
of complex networks is seen in these results as the simplest net-
work, MNISTx2, which is able to safely handle a larger 𝜀 degree of
perturbation than MNISTx6.

The increasing number of hidden layers in MNIST based bench-
marks can also be reflected in the verification times of both 𝛼-𝛽-
CROWN and NeuralSAT. MNISTx2 was much quicker to verify,
with 𝛼-𝛽-CROWN taking a maximum of 1.2s and NeuralSAT tak-
ing a maximum of 9s. MNISTx6 took longer to verify, with both
verifiers taking a maximum of around 80s. These results show that
the verification times for both verifiers increase significantly as
the number of hidden layers in a network increases. While a more
complex network with more parameters and layers may perform
better, it incurs the cost of higher training time and also higher
verification times due to increased computational complexity from
higher dimensionality. As the network becomes more complex, con-
straint solvers in DNN verification tools experience an increased
set of constraints and even higher-dimensional constraint spaces
which make computation take longer.

In addition to 𝜀-intersection and verification times, the unverified
rate of change also differed across MNISTx2 and MNISTx6. As 𝜀 was
increased, the number of verified instances on MNISTx2 steadily
declined. However, on the MNISTx6 benchmark, the number of ver-
ified instances first gradually decreased and then sharply decreased.
This may indicate that slight perturbations on the MNISTx2 bench-
mark had immediate effects on the safety of the result and larger
perturbations had similar effects. On the other hand, slight per-
turbations on the MNISTx6 benchmark has less impact but larger
perturbations had a more drastic impact on instance. This may be
due to the fact that more complex networks are robust to minimal
noise but after a 𝜀 threshold are significantly less robust than a
simpler network at the same 𝜀 threshold.

6.2 Activation Functions
The MNISTx6 and ERAN benchmarks both contain 6 hidden lay-
ers but use the ReLU activation function and Sigmoid activation
function respectively. The difference in activation function can be
demonstrated in the 𝜀-intersection, verification time and unverified
rate of change. The 𝜀-intersection of MNISTx6 was 𝜀=0.0267 while
the 𝜀-intersection of ERAN was between 𝜀=0.0133 and 𝜀=0.0178.

The ERAN network was able to handle a lesser degree of perturba-
tion than the MNISTx6 network, which indicates that the Sigmoid
activation function may be more susceptible to adversarial attacks
than the ReLU activation function. Since the Sigmoid activation
function, which is a non-piecewise function involving exponen-
tiation and division operations, is more complex than the ReLU
activation function, which is a piecewise linear function, networks
that consists of Sigmoid activation functions may be more sensitive
to added noise in inputs. This increase in sensitivity to perturbed
instances can be demonstrated in the change in 𝜀-intersection.

The change in activation function between the MNISTx6 and
ERAN benchmarks is most apparent in the verification times for
both𝛼-𝛽-CROWNandNeuralSAT. The verification time forMNISTx6
peaked at around 80s for both verifiers while the verifiers reached
the 180s timeout on most unverified instances in the ERAN bench-
mark. The significant increase in verification time can be attributed
to the increased computational complexity of the Sigmoid over the
ReLU. The Sigmoid activation function’s non-linearity makes con-
straint solving more computationally expensive than the piecewise
linear activation function that is the ReLU, which can be seen in
the significant increase in verification time for both verification
tools. In addition, it is worth noting that many instances in the
ERAN benchmark were deemed unverified due to timing out. A
larger timeout may have allowed more instances to be verified by
the verifiers, which would have also impacted the 𝜀-intersection
for this benchmark.

The difference in unverified rate of change between MNISTx6
and ERAN can also be attributed to the increased complexity of the
Sigmoid over the ReLU. All instances in the MNISTx6 benchmark
were unverified at 𝜀=0.06 while all instances in the ERAN bench-
mark were unverified at 𝜀=0.04. The unverified rate of change was
higher in the ERAN benchmark as more instances got classified as
unverified as the 𝜀 gradually increased, which reinforces the idea
that the ERAN network was more sensitive to perturbation due to
the inclusion of the Sigmoid activation function.

6.3 Layer Types
The latter 2 benchmarks introduced, ResNet2b for CIFAR10 and GT-
SRB, are best defined by their increasing complexity and application
to harder problems. These benchmarks introduced new layer types
that were previously restricted to fully connected layers. CIFAR
introduced a basic convolution layer. The 𝜀-intersection found for
CIFARwas 𝜀 ≈ .009which signifies a decrease from both the normal
fully connected layer type and inclusion of the sigmoid activation
function. The convolutional layer is learnt in a different way where
it attempts to learn spatially invariant aspects. This poses a more
difficult verification process. As well, lighting and noise can affect
the robustness of these models by altering those invariant spaces to
a slightly different pixel value. If representative data is not included
in the training process then the verifier will have a harder time
verifying and falsifying instances. This leads to the increased time
that we see in our results. Overall, the increased noise affects the
ResNet model more than any of the previous models due to the
increased complexity of convolution layers.

GTSRBwas a further expansion on convolutional networks while
using other activation functions. This benchmark established the
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worst 𝜀-intersection by far, 𝜀 = .0008, a 10x decrease fromResNet. As
well, there was not a true time inflection point since the problems
started out as hard to verify and only got easier to falsify. The
GTSRB is the only benchmark which the time inflection point
comes before the 𝜀-intersection point. This fact demonstrates how
complex architectures with different layer values can become very
hard to verify.

This can also be related to GTSRB being the only benchmark to
have more than 10 output classes. More decision boundaries are
inherited by this model which increases the complexity to verify
the layer types. This combined with complex layer types causes the
problem to become harder to verify. However, progress towards
these benchmarks are considered the most important for advancing
verifiers and model development. It is crucial that we established
effective guardrails to these models so we can ensure against ad-
versarial attacks. As well, it is necessary to support more common
layer types, which is the goal of including the ResNet and GTSRB
benchmarks. If a generalized verification approach can be reached,
we can verifying more diverse models and ensure every safety
critical application is secured with a stark boundary.

6.4 𝛼-𝛽-CROWN and NeuralSAT
Overall, 𝛼-𝛽-CROWN and NeuralSAT compared closely for all the
chosen benchmarks. We hypothesize that if given more time, 𝛼-𝛽-
CROWN should verify more instances than the NeuralSAT counter-
part. Seen through the ERAN and CIFAR benchmarks, 𝛼-𝛽-CROWN
can unverify more instances at the higher 𝜀 values before exceeding
the timeout because verification takes on average a lower time per
𝜀. If the timeout is removed, we expect a trend seen in the MNISTx2
benchmark to continue. This is where the time taken to execute all
instances reaches an absolute peak. This peak may exist completely
past the boundary of feasibility for execution time.

7 LIMITATIONS AND FUTUREWORK
This work was limited to the experimental settings that we chose.
Ideally, more randomized instances and more 𝜀 values in our de-
fined range would have been used. The general trends of these
benchmarks would have still been seen, but the performance be-
tween verifiers could show more discrepancies with a more tuned
approach. We were ultimately limited by computational power and
time.

Additionally, the choice of benchmarks was focused mainly on
image classification. More benchmarks exploring other application
domains, especially more safety critical ones, can provide more
insight into how these verifiers can integrate into the development
work flow. Safety critical applications would benefit the most to en-
sure that our prediction is correct. A study into non-urgent medical
imaging could be done where the model makes a prediction, and
the verifier can run for an extensive amount of time to verify this.
In general, more benchmarks can be added to this effort to further
understand what benefits each verifier holds.

Lastly, we used 𝛼-𝛽-CROWN and NeuralSAT as our two main
verifiers to test the benchmarks on. However, other verifiers bring
their own pros and cons and can be better at verifying certain tasks
or checking different properties other than robustness. Further

work would be to include other state of the art performing verifiers
such as MN-BaB [9], Marabou [13], or Fairify [4].

8 CONCLUSION
We present a review of deep neural network verification using two
state of the art verifiers, 𝛼-𝛽-CROWN and NeuralSAT. We focused
on the local robustness property which ensures that a model can
maintain a correct prediction despite added noise or environmental
change to the input. In conjunction, adversarial examples should be
detected by the verifier to ensure that intentional and unintentional
attacks are identified. We analyzed these abilities of the verifiers
using set of benchmarks that are representative of various DNN
architectures. This includes comparing how the number of hid-
den layers, activation functions used, and complex layer types can
impact and alter the verification process. These benchmarks used
the MNIST, CIFAR, and GTSRB datasets with pretrained models to
generate robustness properties. These were defined by a 𝜀 value
which determines how much each pixel is perturbed and bounded
by. All pixel bound constraints with the same output constraints
were fed to the verifier to verify or falsify.

The model complexity was increased through increased num-
ber of hidden layers, non-ReLU/non-piecewise linear activation
functions, and non-fully connected layers. It was found that this
increased complexity resulted in a longer verification time and
more instances to not be verified at lower 𝜀 values. The MNISTx2
and MNISTx6 demonstrated that the verifier can easily verify small
network neuron spaces. The work is divided on the GPUs and took
less than 10 seconds for the hardest instance to verify. However,
with more hidden layers and the same instances, it became a lot
harder to verify seen by a distinct time inflection point of more than
80 seconds at about the same 𝜀. The ERAN benchmark continued
this trend by using the Sigmoid activation function on top of the
6 hidden layers. The non linear nature of the Sigmoid brought a
longer verification time while pushing the 𝜀-intersection from .0267
to .0177. This indicated that non-linearity causes less instances to
be verified within the alloted time. The CIFAR and GTSRB bench-
marks confirmed our findings that increased complexity makes
verification extremely hard. The ResNet architecture introduced
convolution layers which caused a low 𝜀-intersection with the GT-
SRB network being even lower with a sharp decline in ability to
verify instances.

We concertized the verification of deep neural network through
the use of 𝜀-intersection, time inflection, and the verified/unverified
rate of change. We aim to increase verification when developing
and deploying models by offering metrics to ensure robustness and
guiding model improvements.

9 SUPPLEMENTARY MATERIAL
The artifact for this project can be found at https://github.com/
sgsikorski/DNN_Analysis/. All plots presented can be found in /re-
sults using a standard
sweeping_eps_BENCHMARK_INSTANCES_VERIFIER format. These
were plotted with plot.py. The local robustness properties were gen-
erated according to generateProperties.py and wrote them to a
standard vnnlib file which lived in a folder that housed the onnx
file. All 𝛼-𝛽-CROWN instances were run with a given configuration

https://github.com/sgsikorski/DNN_Analysis/
https://github.com/sgsikorski/DNN_Analysis/
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file found in /configs. All NeuralSAT instances were run with a
script found in /run_ns_instances
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