
GPU-based Quantum Circuit Simulation
Transpilation Optimizations

Scott Sikorski
University of Virginia

nqj5ak@virigina.edu

Abstract—Recent developments in quantum computing
have illustrated the immense benefit that these computers and al-
gorithms can bring to classically hard problems. While hardware
is not publicly available, simulations are increasingly more impor-
tant to enable research in new quantum computing methods and
optimizations. These simulations can be can provide a lot of use;
however, they suffer from computation and memory costs which
exponentially scale to the size of the quantum computer. GPUs
have been used to increase throughput relieving computational
pressure but memory access latency can lag the system. Thus, a
vital part in creating capable simulators is the transpiling phase,
which like its classical compiling counterpart, breaks down the
high level circuit to primitives. A mixture of circuit optimizations
can then be applied that exploit information about the system.

In this paper, I propose GPU-based quantum computer
transpilation optimizations within a quantum circuit simulator.
Quantum Peephole Optimization (QPhO) performs gate can-
cellation and qubit gate clustering to reduce the number of
necessary gates and reduce costly CPU-GPU data exchanges.
It leverages single qubit basis state information that can be
statically determined at transpile time. Using this information,
two qubit CNOT operations can be eliminated or replaced
with less expensive gates due to the control qubit basis state
not activating the target qubit. Passes are conducted over the
circuit until convergence is reached. Gate cancellation reduces
the number of qubits unnecessarily being transferred to the GPU
and can delay involvement. This approach is also extended with
cluster circuit reordering techniques. To reduce the number of
data transfers, single non-involved qubit gates can be delayed
according to the latest used definition. This uses a line by line
basic block representation of QASM2.0 code. Experimentation
is done on a variety of 28+ qubit circuits that are the core of
many popular algorithms. Transpilation time was not shown to
dramatically increase while benefitting from an average of 10.6%
(up to 23.5%) reduction in number of gates and 91% (up to
300%) decrease in execution time over the baseline non-optimized
circuit.

I. INTRODUCTION

Quantum computing has become an increasingly more
popular solution over classical computers in many high appli-
cation domains. These quantum computers have been shown
to have asymptotic speedups in large data search algorithms,
chemistry and physics simulations, cryptography, and more
[20]. Recently, IBM has released quantum computers with
one chip containing 1,121 qubits and chiplets containing
133 qubits each [6]. The biggest problem facing quantum
computers is the error-prone probabilistic nature of quantum
mechanics. Typically, it takes anywhere from 10 to 100 physi-
cal qubits to encode one fault-tolerant quit. So while these new
developments in qubit amount are close to containing enough

qubits to build fault-tolerant qubits, we must accommodate
noisy computation to further develop quantum computing
development. These machines are deemed Noisy Intermediate
Scale Quantum (NISQ) [16] computers due to the error
associated with computation. This may include decoherence
errors (transition from a high to low energy state), bit flip
errors from environmental noise, or operational errors.

While quantum hardware has become more realized,
there is still not a large number that are publicly available
to researchers and developers. Thus, a huge aspect of re-
searching and developing new algorithms involves building
noisy simulators that can simulate the quantum process. These
simulations use a sampling based approach to determine the
output of a circuit. The circuit applies a variety of gates
onto qubits, similar to assembly instructions. These gates alter
the probability amplitudes of the qubits. The qubit can then
be measured out which will collapse the probability wave
function to output the result. As a result, the correct output
can be shrouded by the incorrect options on a single run.

Fig. 1: Exponential Execution Times for IQP Circuit

One major drawback of these simulations is that they
are compute-intensive and memory intensive. This is due to
the requirement to fully and accurately compute and store
the information of the entire evolving quantum system state.
Similar requirements are necessary when applying gates as
this requires traversing all the qubits and their probability am-
plitudes. These costs are exponential to the number of qubits

resulting in poor simulation times when the same circuit needs
to be rerun thousands of times to compute a correct output.
Figure 1 illustrates this execution time using the Instantaneous
Quantum Polynomial (IQP) circuit. In an effort to speedup
simulations, GPUs have been tasked with delivering high
throughput in the underlying quantum simulation computation.
They have shown a lot of promise as the amplitudes can
be split up and calculated in parallel. Current Qiskit [17]
frameworks support GPU acceleration through their specific
backend simulators, such as Qiskit-Aer.

GPUs are extremely useful in increasing computational
throughput but greatly suffer from current GPU device mem-
ory constraints. This means that data needs to be allocated
on the main CPU memory then transferred over to the GPU
for computation to take place on that data. This data exchange
latency is extremely high and can cause bottlenecks in compu-
tation and lead to underutilization of the GPU parallelization
capabilities.

The proposed transpilation optimizations help alleviate
the compute and data exchange costs that can hinder GPUs
and underutilize the full parallelization abilities. They are
built on the fact that the qubit basis states can be inferred
and tracked throughout the circuit at transpile time. Basis
state equivalences can then be used to update the system
information. These equivalences are particularly useful when
two qubit gates such as CNOT are activated based on the
basis state of one qubit which acts as the control. If the control
exists in a determined state which does not cause an operation
on the target qubit, the gate can be effectively eliminated.
The same idea can be applied for tracking the basis state of
the target qubit, although in a different predetermined basis
state. Therefore, this information can guide the transpiler in
eliminating unnecessary gates and replacing two qubit gates
with a single qubit gate. This simplification and optimization
can prove to be particularly useful for GPUs which can suffer
from long memory exchanges to effectively compute the same
result. This can also prevent involvement of a qubit which
allows the GPUs to focus on computing the already stored
qubits.

Additional optimizations are proposed to further increase
the utilization of gate cancellation and decrease GPU data
exchanges. Circuit reordering methods are developed on the
back of basis state evaluation to delay gate operations until
there is an affect on the system. As a motivating example,
imagine the GPU is constrained to 2 qubits in memory at a
time and our circuit allocates and executes over 3 qubits. We
start by performing computation on q0 and q1. A CNOT
operation involving q0 as the control and q2 as the target is
read in. Usually, this would mean we evict q1 from memory
and load in q2 causing a latency period before computation
can resume. However, our basis state tracking has determined
during transpile time that q0’s basis state would not cause a
change in q2 basis state. We can eliminate this gate from the
circuit, preventing q1 from needing to be evicted before further
work is done on it.

I build on previous static iterative dataflow analysis

compiler techniques that utilize a definition of earliest and
latest used. This essentially makes multiple forward and back-
ward passes through the code (circuit in context of quantum
programs) to determine the earliest and latest lines or blocks
that an operation can be placed at. These definitions can then
be extended with knowledge of the basis state to indicate
the range of motion that an operation has to delay qubit
involvement.

Overall I propose the following contributions

1) Integration of gate cancellation into the Qiskit-Aer
framework to reduce the overall number of gates in a
given quantum circuit. This exploits qubit basis state
equivalences to eliminate unnecessary gates.

2) Development of circuit clustering to mitigate costly
CPU-GPU data exchange times by pushing back qubit
involvement on a earliest-used to have a controlled
effect on other qubits. This prioritizes dedicated GPU
execution without continuously storing and reloading
data.

3) Experimentation on a variety of benchmarks used in
today’s quantum algorithms showcase that the number of
gates reduces, quantum circuit execution time decreases,
and GPU memory transfer times are decreased.

II. BACKGROUND

A. Quantum Computing

Quantum computing is centered on the quantum bit or
qubit. Classically a bit is represented as being in a 1 or 0 state.
A qubit is a unit of quantum information that is defined by
two computational basis states |0⟩ and |1⟩. It can be thought
of as a point on the bloch sphere (Figure 2) where operations
shift and rotate where this point is located. The quantum state

Fig. 2: Qubit Bloch Sphere With Basis States

is typically expressed as a linear combination of these two
states.

|ψ⟩ = a0|0⟩+ a1|1⟩ (1)

a0 and a1 are complex numbers which describe the probability
amplitudes of the basis state. The squares of these complex
numbers equal 1 as |a0|2 + |a1|2 = 1. This means that on
measurement of any qubit, the result will equal the basis state
with the described probability. Another way of expressing the
state of a qubit is through state vectors

a0 =

[
1
0

]
a1 =

[
0
1

]
(2)

For any n qubit system, we express |ψ⟩ as a linear
combination

|ψ⟩ = a0..00|0..00⟩+ a0..01|0..01⟩+ ...+ a1..11|1..11⟩ (3)

This means that there are 2n state amplitudes that must be
tracked during computation.

Control |ψ⟩

Target |Ψ⟩

Fig. 3: Controlled Not Gate Circuit

A quantum circuit is essentially made up of a sequence
of gates which act as instructions operating on qubits. There
are a variety of single qubit gates such as the identity gate I ,
Hadamard gate H , Phase gates S, and the Pauli gates X , Y , Z.
These are accompanied by double gates like Controlled-NOT
CNOT , illustrated in Figure 3, and the controlled counterparts
of the Pauli gates CX , CY , CZ. These use the control qubit
|ψ⟩ state to determine if the target qubit Ψ is flipped, like a
traditional XOR instruction. All of these are uniquely defined
by a 2n x 2n unitary matrix which is multiplied using the
tensor product with the complex amplitudes of the n qubits is
operating on.

H =
1√
2

[
1 1
1 −1

]
(4)

The goal is to decompose algorithms of larger sequences
of gates into these IBM supported gate primitives. This is done
with a series of compilation and transpilation passes that can
benefit from optimizations.

B. Qiskit-Aer Framework

Qiskit-Aer [17] is a high performance simulator backend
framework for Qiskit circuits that takes advantage of GPU
accelerators. The framework is primarily developed in C++ to
enhance the simulator methods provided which can optimize
the tensor products of the qubit probability amplitudes and
gate matrices. Aer is able to transpile and run ideal or
noisy simulations of any given circuit. This transpilation stage
involves 3 main IBM developed optimizations, cache block
pass [4], gate fusion [1], and optimized gates through sparse
matrix representation.

Cache block pass aims to reorganize the circuit with
sometimes an increased number of gates to make effective
use of the cache. Guided by an execution cost-based heuristic,
it achieves this by inserting SWAPs from a cached qubit
that has no instructions on it to a qubit with new instructions
in a certain range of time. The SWAP is done again after
execution of what q2 would have done without needing to
evict and load new memory in. An example is illustrated in
Figure 4. The other featured optimization is the fusion of gates
which simply identifies sequences of single qubit gates that
can be combined and produce one equivalent gate. This only
focuses on gates that have no 2 qubit gate intermediate steps.

C. Related Work

Prior works have been proposed to optimize circuits at
the gate level. Peephole optimizations have been proposed
for classically computers [13] that targets a window of code
and deduces the pattern. Similarly, circuit equivalences have
been discovered at the algorithmic level [19] and the quantum
compiler peephole optimization [15]. Liu et al. [12] developed
an analysis of the qubit basis states to statically infer the results
of the gates. Sections of gates in a specified window can be
eliminated as the unitary matrix of the input equals that of the
output. Other techniques have proposed circuit reordering and
remapping to aid noisy characteristic optimizations [18].

Qiskit [17] has a variety of transpiler optimizations
available on their generic framework. This includes Hoare
logic [9] that uses a set of defined in and out gate constraints
on the circuit. This is implemented with a Z3 solver which
incurs a large overhead. Qiskit also introduces passes to
identify repetitive gates. Commutative Cancellation, Block
Consolidation, and CX Cancellation attempt to find sequences
of single and two qubit gates to be decomposed into higher
throughput gates.

There are other works that use GPUs as the main
execution engine of the quantum circuit. Most of which face
issues in storing all the data in the GPU. Li et al. [11] tried
multi-GPU clusters to store the entire system solely on the
GPU memory to prevent any data exchanges. This method
was limited to 14 qubits due to the aggregated memory not
being enough. Doi et al. [5] initially proposed that GPUs can
still be used even if we do not store all the data on the GPU.
A data exchange through CPU secondary storage would allow
us to compute on both the CPU and GPU. The computation
benefits were reduced due to these data exchanges introducing
overhead.

Distributed systems have shown promise in creating fast
quantum circuit simulations. Compiler passes devloped by
Guerrischi, Gian [8] manipulated the order in which the state
amplitudes are stored to maximize the distributed abilities.
Zhao et al. [23] use proactive state amplitude transfers, data
compression, |0⟩ state pruning, and delayed qubit involvement
to enhance the effects of pruning. Zhao et al. [22] similarly
proposed an extension that utilizes secondary storage and
data transfer management to store all the qubits in memory
and prevent costly exchanges. Pednault et al. [14] claimed

0 H H

1

2 H

=⇒

0 H X H X H

1

2 X X

Fig. 4: Cache Block Pass

to simulate 49 qubits. They achieved this with subcircuit
partitioning to handle parts of the circuit at times so that
only a partition was stored in the GPU at once. On top of
that, Zhang et al. [21] found that the most optimal simulation
method differs for different parts of a circuit based on the
pattern. They developed a hybrid framework which partitioned
the circuit and simulated using the optimal method.

D. Benchmarks

Listed below, there are various representative quantum
circuits which I aim to target. These are the core of popular
algorithms such as Shor’s algorithm. They explore different
properties such as circuit depth and width, qubit involvement,
and gate patterns.

1) Instantaneous Quantum Polynomial (IQP) [3] helps
complex quantum computation simulation when sam-
pling the output probability distribution.

2) Quantum Fourier Transform (QFT) [10] is the quantum
equivalent to the inverse discrete Fourier Transform.
This circuit is a main component of Shor’s algorithm
which is used for prime factorization.

3) Hidden Linear Function (HLF) [2] solves the 2D hidden
linear function problem that uses a shallow circuit. The
goal is to determine if a function or oracle is linear
by querying the function in parallel at multiple inputs.
Grover’s algorithm is typically used to help this problem
by flipping the states |x⟩ which f(x) = 1

4) Grover’s Search (GS) [7] is a technique used to search an
unsorted database for a value. This typically has a O(N)
runtime but this shows that the probability of finding if
a value exists scale with O(

√
N) number of iterations.

The specific characterization in terms of number of qubits,
single qubit gates, and two qubit gates are described in Table I.

Qubits 1-Qubit Gates 2-Qubit Gates Total Gates
IQP 28 59 319 377
QFT 28 32 388 420
HLF 28 58 25 83
GS 28 115 27 142

TABLE I: Benchmarks

III. GATE CANCELLATION

Gate cancellation is centered around the idea that certain
basis states result in a statically determined operation. For
example, our CNOT gate takes the control |ψ⟩ and flips the
basis state of the target |Ψ⟩ if |ψ⟩ = |1⟩. However, if |ψ⟩ = |0⟩,
then |Ψ⟩ remains in the position on the bloch sphere as before.
No computation is necessary, but the GPU will still anticipate

Fig. 5: Single Qubit Basis State Analysis

the data exchange of both qubits. From here, we can simply
remove the gate and the need to load in that data and compute
over all the system’s probability amplitudes.

This technique can be useful and can be extended to
a variety of basis states. Like how |0⟩ and |1⟩ point along
the +z and −z direction, respectively, other basis states are
determined by which axis the qubit is pointing along. We
introduce 4 new basis states, |+⟩, |−⟩, | + i⟩, | − i⟩ as seen
in Figure 2. These basis states can be represented as a unique
unitary matrix applied to qubit’s amplitudes.

Therefore, the Pauli gates can be thought of as rotations
among the bloch sphere to different basis states based on the
operation. For example, the X gate performs a rotation about
the x-axis which transitions |0⟩ and |1⟩ between each other.
Liu et al. [12] provide a comprehensive automata for single
qubit basis state analysis as seen in Figure 5. This analysis
lays the groundwork for cancelling gates.

A. Optimizing Single Qubit Gates

We can begin by simply eliminating single qubit gates
that cause the input basis state to equal the output basis state.
Applying Z to a qubit in |0⟩ will simply result in |0⟩, allowing
us to eliminate the Z gate. This is possible because the input
|0⟩ state is the eigenstate of the Z matrix with an eigenvalue
of 1. In general, for any U function, we can eliminate U if
|ψ⟩ = U |ψ⟩. This case rarely occurs but can prove useful for
multi qubit optimization as we begin to eliminate CNOTs
from the circuit.

TABLE II: CNOT Equivalences
|ψ⟩

|Ψ⟩

|0⟩ |1⟩ |+⟩ |−⟩ ⊤
|0⟩ Remove Replace X on |Ψ⟩ Keep CNOT Keep CNOT Keep CNOT
|1⟩ Remove Replace X on |Ψ⟩ Keep CNOT Keep CNOT Keep CNOT
|+⟩ Remove Remove Remove Remove Remove
|−⟩ Remove Remove Replace Z on |ψ⟩ Replace Z on |ψ⟩ Replace Z on |ψ⟩
⊤ Remove Replace X on |Ψ⟩ Keep CNOT Keep CNOT Keep CNOT

B. Optimizing CNOT
Most circuits are not made up of just these single gate

rotations. The benefit of quantum computers comes from their
ability to entangle the system state. This achieved by two qubit
gates that make qubits outcome depend on each other. The
main operation is the CNOT gate, which mentioned before,
entangles qubits so two qubits’ outcomes correlate with each
other. This effectively means that any additional gates that are
applied to one of the entangled qubits must be applied to the
other qubit as well. Thus, the proposed technique seeks to
remove as many of the CNOT gates as possible or replace
them with less expensive and involved gates. Liu et al. [12]
provide a table that documents the possible circuit changes
that are possible with a given pair of control and target qubit
basis states. Table II describes the operations that can take
place based on the basis state at each step.

Initialize all qubits’
basis state = |0⟩
do

for op in c do
q = op.qubitsOn;
if |q| == 1 then

Update_Basis_State(q, op);
end
else if |q| == 2 then

Remove(op) if removable;
Converged = True;
Replace(op) if replaceable with single
qubit op; Converged = True;

Do nothing;
end
else

∀qi ∈ q, qi = ⊤
end

end
while Not Converged;

Algorithm 1: Gate Cancellation Pass Overview

The general overview is outlined in Algorithm 1. To
begin our gate cancellation pass, we initialize all our qubits
to have a basis state of |0⟩. A first forward pass is conducted,
iterating through all the operations. For each operation, if the
gate operates on a single qubit, the basis state of that qubit is
updated. This basis state is updated according to Figure 5. All
Pauli gates and phase rotations are supported that can shift the
basis state of the qubit. The basis state for that qubit is now
stored and updated then propagated down into future uses.

Once we reach a two qubit gate U 1, we will attempt to
infer the result of applying U to the input unitary matrix. The
most applicable inference is the CNOT equivalence. From the
propagated basis state values for both the control and target
qubit, we follow the equivalences guide. If we can remove the
gate, the gate is deleted from the circuit. If we can replace
the CNOT , the dictated control or target qubit is given an
additional gate to execute before the target qubit receives its
phase gate. This additional gate is typically less expensive than
CNOT and can prevent another qubit from being transferred
if the replacement gate is on |Ψ⟩. However, there are 3 three
cases where the control qubit is given a new gate and must
be involved. And so if we have deleted or replaced any gates
in the circuit, we will conduct another pass until convergence
is achieved. This convergence allows a consistent propagation
of values such that the number of gates can greatly decrease
in circuits that have a lot of 2 qubit operations.

However, gate cancellation can cause fragmentation in
the structure of the circuit that results in more data exchanges.
Some circuits will prepare qubits by applying a single qubit
gate, typically a Hadamard gate, to each qubit at the start of
the process. Eventually, gates operating on some qubits will
be eliminated. But those single qubit gates still linger at the
top which will cause the circuit to load the data in, compute,
and store for later use. To alleviate this, qubit cluster circuit
reordering is proposed.

IV. CIRCUIT CLUSTERING

Gate cancellation can greatly aid in preventing unnec-
essary operations. However, to alleviate the fragmentation
that it may cause and to take advantage of the full benefits,
gate clustering is proposed to group operations based on the
qubits together. Say our circuit declared N number of qubits
then applied a single gate operation to each at the beginning
of the process. Two qubit gates are applied sequentially to
various qubits. I propose a circuit reordering technique that
will identify group these operations together and cluster them
based on the latest used definition.

To achieve a clustering of qubits, the latest used map-
ping must first be defined. Latest Used maps qubits to the
latest possible basic block that a qubit can exist in before
having two qubit gates applied to. This basic block is set

1This U gate stands for any controlled gate that is supported. Qiskit offers
support for high level controlled rotations that activate rotations based on the
input to the control qubit. By using basis state propagation, the phase may
be eliminated. Thus, this approach can be generalized to any grouping of
CNOT + U† gate, where U† gate represents any single qubit rotation or
shift operation on the target qubit.

H q0 H q0
H q1 H q1
H q1 =⇒ H q1
H q2 cx q0, q1

cx q0, q1 H q2

Example Clustered Circuit

to the lines that the QASM code exists at. I chose this
basic block discretization for two main reasons. 1) Qiskit
represents the circuits as directed acyclical graphs (DAG) 2)
This discretization represents the closest over-approximation
to the real solution. Combined with reason 1, we can guarantee
the correctness of the solution even after optimizations are
applied. The second part of this definition is based on once two
qubits are entangled, their states are correlated. This means
that we can only postpone the single qubit gates to the latest
used line where the first two qubit gate is located. This is
because we cannot alter the system behavior when qubits begin
to entangle. Thus, this approach keeps the correctness while
grouping the gates which act on the same qubits.

Input: Circuit c, Qubits q
1 Perform Gate Cancellation
2 do
3 for op in c do
4 q = op.qubitsOn;
5 if |q| == 2 then
6 latest[if q1 == null, if q2 == null] = opIdx;
7 end
8 if |q| == 1 then
9 while latest[q] (!= opIdx+1 || == null)

&& nextOp.qubitOn != q && latest[q] !=
nextOp.qubitOn do

10 eraseAt(op, originalIdx);
11 insert(op, opIdx);
12 latest[q] = opIdx + 1;
13 Converged = True;
14 end
15 end
16 end
17 while Not Converged;

Algorithm 2: Circuit Reordering For Latest Use Cluster-
ing

From here, the overview of the clustering is outlined
in Algorithm 2 and follows. We perform any initial gate
cancellation which can eliminate unnecessary gates while
fragmenting the circuit. From here, we take the new circuit
and initialize an empty latest map. The first pass through the
circuit is focused on finding the first two qubit gate operations.
Seen in line 5 and 6, the latest map is updated with the 2 qubit
gate at which we first find the qubit. If either of the qubits have
already been found earlier in the pass, the non found qubit will
be the only that gets the later gate line. This is key to respect
the earlier latest used value of the 2 qubit gate.

Next we focus on the single qubit gates which will be

the main operations that we move and reorder the circuit with.
This is because we wish to delay these involvement operations
until we are forced to. I achieved this by iterating through the
circuit until we reached the latest or last line or that the next
operation would operate on q. The operation could then be
deleted from its prior location and inserted at the line before
it is used or its latest possible line. The latest is now updated
in the case that the next gate operates on q. Since we have
changed the circuit, another forward pass is conducted over
the circuit, this time with newly updated latest map.

During development, two main conflicts arose, same
latest line and lack of 2 qubit gate for a qubit. The first of
which was solved by the third condition in line 9. Simply if
two single qubit gates shared the same latest line, no reordering
took place. Secondly, if the circuit includes qubits that never
entangle, then we group operations on the same qubit together
preferably at the end of the algorithm. This should almost
never occur since entanglement is the key property behind
quantum algorithms working.

V. RESULTS

Both of the described passes were implemented directly
into the Qiskit-Aer circuit executor. These were done using
version 0.14.1 of Qiskit-Aer with version 1.0.1 of Qiskit. The
optimizations were simply included after fusion and cache
block pass as additional passes modifying the circuit structure.
The transpile optimization time was set to 0. This means that
no non-Qiskit-Aer optimizations were included before or after
QPhO. I aimed to analyze just Aer optimizations as some
regular Qiskit optimizations can slow down the Aer simulator.
The regular Qiskit simulator will organize partitions of the
circuit as unitary functions which can be applied as a gate
and cannot be run on the GPU. I seek to analyze how the
circuit can be optimized at the gate level within Aer.

A. Configuration

All experiments were conducted on the University of
Virginia Computer Science GPU servers. Each circuit was run
for 1024 shots and then conducted 10 times total to retrieve
the mean and standard deviation of the execution times. These
times varied as a result of server times.

The benchmarks were split up into four separate groups,
baseline, baseline with QPhO, IBM optimized, and IBM
optimized with QPhO.

• Baseline is described with no optimizations circuit level
optimizations applied. This includes any found in the
Qiskit or Qiskit-Aer framework.

• QPhO pass takes place over the unoptimized baseline
circuits. This provides just the gate cancellation and
clustering methods.

• IBM optimized group was given the gate fusion and cache
block passes that are described in section II-B.

• QPhO applied on top of the IBM optimizations. The
QPhO pass is done after fusion and cache blocking to
fully analyze how it can integrate into the IBM system.

TABLE III: HLF Circuit simulation (shots = 1024)

Baseline Baseline + QPhO IBM Optimized IBM Optimized + QPhO
Total Execution Time 1.1856 ± 0.0174 0.5592 ± 0.00928 1.1162 ± 0.0102 0.5055 ± .0076

Transpile Time 0.0314 ± 0.0457 0.0379 ± 0.06340 0.0153 ± 0.00395 .0269 ± .01947
Minimum Number of Gates 84 68 83 68

TABLE IV: GS Circuit simulation (shots = 1024)

Baseline Baseline + QPhO IBM Optimized IBM Optimized + QPhO
Total Execution Time 2.2009 ± .0095 .5924 ± .0232 0.999 ± .0125 .5120 ± .0130

Transpile Time .0210 ± .0123 .0274 ± .0120 .0242 ± .0149 .0237 ± .0183
Minimum Number of Gates 142 115 142 115

TABLE V: IQP Circuit simulation (shots = 1024)

Baseline Baseline + QPhO IBM Optimized IBM Optimized + QPhO
Total Execution Time 2.712 ±0.0268 2.509 ± 0.0187 2.680 ± 0.0146 2.4602 ± .0172

Transpile Time 0.0310 ± 0.0132 0.0267 ± 0.0132 0.0290 ± 0.0162 0.0301 ± .0195
Minimum Number of Gates 377 375 355 355

TABLE VI: QFT Circuit simulation (shots = 1024)

Baseline Baseline + QPhO IBM Optimized IBM Optimized + QPhO
Total Execution Time 2.477 ± 0.0156 2.542 ± 0.0103 2.404 ± 0.0161 2.3852 ± .0190

Transpile Time 0.0296 ± 0.0122 0.0295 ± 0.01423 0.0299 ± 0.0117 .0297 ± .01293
Minimum Number of Gates 420 420 420 420

B. Hidden Linear Function

Hidden linear function was the smallest of the bench-
marks that I chose with 83 total gates for 28 qubits. It also
had the least potential for gate cancellation. Of the 83 total
gates, only 25 of which were 2 qubit gates, all of which were
controlled-Z. However, the simplistic nature of the circuit
benefited from QPhO a lot. A possible reduction of 23.5% of
gates could be eliminated making it the profitable from gate
cancellation. This reduction is relative to increased proportion
of two qubit to single qubit gates when compared to GS.
HLF puts all qubits into superposition then entangles pairs of
them then brings them out of superposition. This effectively
makes N queries which is number of qubits the circuit has.
Because HLF only looks for when the hidden function returns
|1⟩ from the resulting gates, the problem can be simplified
greatly. The gate cancellation is seen from any inputs that map
to |0⟩ eliminating the need for their CNOTs. Then the circuit
clustering takes full benefit in reordering. This is because a
singular CNOT is applied to just one pair of qubits. Thus,
we effectively cluster the before H gates with their CNOT .
Then the after H gates can be fully parallelized by the GPU.
There was shown to be a 134% decrease in execution time
for this circuit more than halving that execution time. This
execution time was second only to GS.

C. Grover’s Search Algorithm

Grover’s Search is a variation of HLF which attempts
to find the index based on multiple queries. So similarly, GS
showed a lot of benefits from QPhO. GS applies more gate
rotations after the initial H gates, but these are generally Pauli
rotations which allowed gate cancellation to track the basis
state. In turn, we can eliminate any gates connected to qubits

that do not correspond to the |1⟩ output state. This resulted in
a 19% possible reduction in the number of gates.

As well, GS most greatly benefitted from the circuit
clustering method. The circuit applies single qubit gates with
a CNOT for each qubit then more single qubit gates. This
enabled the approach to fully cluster each individual qubit to
its unique gates which are not associated with other gates.
As seen the execution time for the GS circuit was halved
by the IBM optimizations and then halved again with the
QPhO. This circuit was the only one that the current Aer
optimizations seemed to have a noticeable difference on. This
circuit offers a lot of propagation and peephole optimizations
from the multitude of single qubit gates.

D. Instantaneous Quantum Polynomial

IQP benefitted slightly from the proposed QPhO meth-
ods. Only 2 gates of a possible 319 were cancelled. This is
because IQP used controlled phase gates and not the Pauli
gates so only 2 qubits in the |0⟩ or |+⟩ were identified.
However, the general structure of IQP allowed for clustering
to have an effect on reducing the execution time. IQP is
organized to iteratively introduce new qubits into superposition
then do controlled phase shifts over a various number of those
qubits with the newly superposed qubits as the target qubit.
However, each iteration does not include controlled gates on
every introduced qubit. This allows the clustering method to
benefit from reorganizing some operations to focus on the
computed qubits. An 8% decrease was observed when using
QPhO over the unoptimized circuit. IBM’s optimizations were
able to fuse some gates together, but there were not replaced
or given opportunity to speedup execution. Combined with
the reduced gate number and clustering, there was about a
10% decrease using all optimizations in execution time over

the pure baseline approach with minimal increase in transpile
time.

E. Quantum Fourier Transform

QPhO offered the least amount of benefit to the QFT
circuit in terms of execution time and number of gates can-
celled. No gates were cancelled, and execution time remained
the same as neither method seemed to be useful for this circuit.
This benchmark is an important aspect of Shor’s algorithm,
but the structure showcases QPhO weaknesses. The circuit is
made up of iteratively putting one qubit into superposition with
the Hadamard gate then applying a custom phase shift with
the superposed qubit as the control. The initial superposition
application removes any CNOT equivalences. However, this
showcases that phase rotation could be analyzed more contin-
uously across the bloch sphere to determine optimizations.

F. Overview

Overall, the QPhO passes were generally able to de-
crease the number of gates in the circuit when given CNOT
or controlled-Z gates, as seen in HLF and GS. These methods
were shown to eliminate any CNOT and rotations on qubits
that don’t produce a |1⟩ output basis state. This can theoret-
ically reduce our best case complexity to θ(

√
M) where M

is the number of coefficients with 1 in the hidden function.
This is because we will eliminate all the gates that produce
a 0 meaning we don’t operate on those qubits, effectively
enhancing our θ complexity while keeping the worst case
complexity the same O(

√
N).

IQP and QFT did not benefit from this pass due to their
circuit structures and only including λ phase rotations which
were not considered in how they affected the basis state. This
rendered all the operations to make the target qubit exist in
⊤. For all benchmarks, the transpilation time did not change
dramatically and was able to stay consistent for the number of
qubits. This transpile time varied greatly for each circuit which
means that it took about the same time and this additional
pass did not incur more overhead. In turn, the total execution
time was decreased with the application of QPhO on a totally
unoptimized circuit and when integrated with the Qiskit-Aer
system. This is beneficial to our noisy simulations where we
need to run thousands of shots to infer the correct answer.
QPhO offers a lot of benefit to the multiple query parallelized
circuits.

An intersting point is that the optimizations were good
enough on their own with the other optimizations offered by
the Aer transpiler. For all of the circuits, a similar execution
time was achieved when only QPhO was applied and then
when it was applied on top of the fusion and cache block
pass. I believe this is because both passes optimize away and
consolidate unnecessary gates.

VI. LIMITATIONS AND FURTHER WORK

One major limitation to this work is that the gate
cancellation is reserved for specific rotation gates. Only the
Pauli gates were considered in the analysis and how they

would change the basis state of the qubits that they were
operating on. Realistically, this is not the case for a majority
of quantum algorithms as they contain rx, ry, rz gates and
other user defined phase rotation gates. This leads us to
further develop analysis that track the positioning of the bloch
sphere. We can look to optimizations in the continuity of
superposition that exploit the positioning. Reordering can take
place that better tracks the position and can use an exact
phase angle for potential optimizations. As well, if we are
working on a noisy backend, we can perhaps exploit the noisy
characteristics. We can include more approximation into our
optimizations, especially with very small phase rotations. This
is because our approximation will mix in with the quantum
noise. Additionally, this noise could be filtered and corrected
once fault-tolerant quantum computers are achieved.

Along the limited single qubit gates, only two qubits
gates are supported for optimizations in both the gate cancel-
lation and cluster reordering. Qiskit’s QASM includes gates
that can operate on 3 or more qubits at a time, usually with
one control qubit and then N−1 target qubits. Possible future
work could be to extend the equivalences for multi qubit gates.
This would require more analysis in the basis states and how
they are affected by these other high-level operations. Another
solution is to fully decompose these multi-controlled gates into
only single and two qubit gates. This in turn can be fed to the
transpiler and optimized while ensuring that the correctness
properties are saved.

A beneficial addition to this work would be to support
QASM3.0 code. All the benchmarks were written in QASM2.0
which does not support any branching or function definitions.
An extension to the parsing and compiling of branching and
functions would allow for classical static iterative dataflow
analysis techniques to be applied to quantum computers.
Constant propagation, a close classical gate cancellation coun-
terpart, can be used with branching-split basic blocks where
the join and transfer rules are defined. This work would
be hinged on Qiskit integrating support for QASM3.0 into
Qiskit-Aer and integrating classical registers into the proposed
techniques.

Future work in this cluster approach includes more
manually integrating which qubits can be accessed along
each GPU thread. This work focused primarily on the higher
transpiler level to perform intermediate optimizations on the
circuit. I wasn’t able to access or find anything lower level, so
the optimizations were mainly constrained by Qiskit-Aer and
their codebase for this reason.

A. Note

The data in the results is different from that presented in
the project presentation. I found a bug in my gate cancellation
pass that effectively caused a majority of gates to be eliminated
if the target qubit was in the |+⟩ basis state. This diminishes
some of the benefits that I initially saw and that the circuit
choices seemed to be poor (those being the IQP and QFT
circuits).

VII. CONCLUSION

I proposed Quantum Peephole Optimizations (QPhO)
which aimed to cancel gates through the use of statically
inferred computational basis states of qubits. The gate can-
cellation pass is effectively able to iterate through all the
operations, updating the basis state on single qubit gates
and determining a more cost-effective gate for two qubit
gates. This method can help reduce redundant operations and
delay involvement of qubits in the circuit. Experimentation
on hidden linear function and grover’s search illustrated the
possible gate cancellations that can take place depending on
initial basis state.

On top of this pass, a circuit clustering forward pass
was implemented to reorganize the qubits into computational
clusters. This clustering technique prevented CPU-GPU data
exchanges to increase throughput and decrease circuit ex-
ecution time. Using techniques from classical compilers, a
latest possible block is identified and used to group the qubits
together. This method preserves the system behavior and cor-
rectness of entangled qubits while benefitting circuits that have
scattered qubits. This can be improved further within Qiskit’s
unitary function definitions that create defined U functions
that map input to output. Effectively, these can be defined by
the qubits that they are operating on while combining those
that fit in the GPU memory. All of these optimizations were
implemented directly into the Qiskit-Aer framework such that
they applied to that backend.

VIII. SUPPLEMENTARY MATERIAL

The artifact for this work can be found at https://github.
com / sgsikorski / aer-peephole. The main code is coupled
with the official Qiskit-Aer release to enable the packaging
of the implementation into a Python library. This is found at
https : / / github . com / sgsikorski / qiskit-aer, more specifically
https://github.com/sgsikorski/qiskit-aer/tree/main/src/transpile/
peephole.hpp.

REFERENCES

[1] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-
Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant et al., “Fusion-
based quantum computation,” Nature Communications, vol. 14, no. 1,
p. 912, 2023.

[2] S. Bravyi, D. Gosset, and R. König, “Quantum advantage with shallow
circuits,” Science, vol. 362, no. 6412, p. 308–311, Oct. 2018. [Online].
Available: http://dx.doi.org/10.1126/science.aar3106

[3] M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of
commuting quantum computations implies collapse of the polynomial
hierarchy,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 467, no. 2126, 2010. [Online]. Available:
http://dx.doi.org/10.1098/rspa.2010.0301

[4] J. Doi and H. Horii, “Cache blocking technique to large scale quantum
computing simulation on supercomputers,” in 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE,
Oct. 2020. [Online]. Available: http://dx.doi.org/10.1109/QCE49297.
2020.00035

[5] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, “Quantum
computing simulator on a heterogenous hpc system,” in Proceedings of
the 16th ACM International Conference on Computing Frontiers, 2019,
pp. 85–93.

[6] J. Gambetta, “Ibm’s roadmap for scaling quantum technology,”
IBM Research Blog (December 2023), 2023. [Online]. Available:
https://www.ibm.com/quantum/blog/quantum-roadmap-2033

[7] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 212–219. [Online].
Available: https://doi.org/10.1145/237814.237866

[8] G. G. Guerreschi, “Fast simulation of quantum algorithms using circuit
optimization,” Quantum, vol. 6, p. 706, 2022.

[9] T. Häner, T. Hoefler, and M. Troyer, “Assertion-based optimization
of quantum programs,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–20, 2020.

[10] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, p. 2–17, Jun. 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.parco.2014.12.001

[11] A. Li, O. Subasi, X. Yang, and S. Krishnamoorthy, “Density matrix
quantum circuit simulation via the bsp machine on modern gpu clusters,”
in Sc20: international conference for high performance computing,
networking, storage and analysis. IEEE, 2020, pp. 1–15.

[12] J. Liu, L. Bello, and H. Zhou, “Relaxed peephole optimization: A
novel compiler optimization for quantum circuits,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 301–314.

[13] W. M. McKeeman, “Peephole optimization,” Communications of the
ACM, vol. 8, no. 7, pp. 443–444, 1965.

[14] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein,
E. Solomonik, and R. Wisnieff, “Breaking the 49-qubit barrier in
the simulation of quantum circuits,” arXiv preprint arXiv:1710.05867,
vol. 15, 2017.

[15] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel,
“Data structures and algorithms for simplifying reversible circuits,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 2,
no. 4, pp. 277–293, 2006.

[16] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https :
//doi.org/10.22331/q-2018-08-06-79

[17] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023.

[18] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A
case for variability-aware policies for nisq-era quantum computers,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 987–999.

[19] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in 2007 IEEE/ACM International
Conference on Computer-Aided Design. IEEE, 2007, pp. 69–74.

[20] S. P. Wang and E. Sakk, “Quantum algorithms: overviews, foundations,
and speedups,” in 2021 IEEE 5th international conference on cryptog-
raphy, security and privacy (CSP). IEEE, 2021, pp. 17–21.

[21] C. Zhang, Z. Song, H. Wang, K. Rong, and J. Zhai, “Hyquas: hybrid
partitioner based quantum circuit simulation system on gpu,” in Proceed-
ings of the ACM International Conference on Supercomputing, 2021, pp.
443–454.

[22] Y. Zhao, Y. Chen, H. Li, Y. Wang, K. Chang, B. Wang, B. Li, and
Y. Han, “Full state quantum circuit simulation beyond memory limit,” in
2023 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2023.

[23] Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey, S. Upadhyay,
Y. Zhang, K. D. Jordan, J. Yang, and X. Tang, “Q-gpu: A recipe of
optimizations for quantum circuit simulation using gpus,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2022, pp. 726–740.

https://github.com/sgsikorski/aer-peephole
https://github.com/sgsikorski/aer-peephole
https://github.com/sgsikorski/qiskit-aer
https://github.com/sgsikorski/qiskit-aer/tree/main/src/transpile/peephole.hpp
https://github.com/sgsikorski/qiskit-aer/tree/main/src/transpile/peephole.hpp
http://dx.doi.org/10.1126/science.aar3106
http://dx.doi.org/10.1098/rspa.2010.0301
http://dx.doi.org/10.1109/QCE49297.2020.00035
http://dx.doi.org/10.1109/QCE49297.2020.00035
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://doi.org/10.1145/237814.237866
http://dx.doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

	Introduction
	Background
	Quantum Computing
	Qiskit-Aer Framework
	Related Work
	Benchmarks

	Gate Cancellation
	Optimizing Single Qubit Gates
	Optimizing CNOT

	Circuit Clustering
	Results
	Configuration
	Hidden Linear Function
	Grover's Search Algorithm
	Instantaneous Quantum Polynomial
	Quantum Fourier Transform
	Overview

	Limitations and Further Work
	Note

	Conclusion
	Supplementary Material
	References

