
Quiet Direct Simulation (QDS):
Fast, Low-Noise Fluid Simulations

Scott Sikorski
Under Adam B. Sefkow with help from Mike Lavell

Department of Mechanical Engineering and Computer Science
University of Rochester with the UR Laser Lab for Energetics

1

Outline

● Our previous DSMC particle in cell (PIC) method and its problems

● The 1-D QDS algorithm base (in Python)

● The SOD Shocktube Problem solved using QDS

● Moving to multi-dimensional

● Enabling multi-threading and GPU computation with CUDA and

NVIDIA GPU

● Where to go next

● Conclusion

2

DSMC Algorithm

At t = 0, we initialize our density of a cell
giving each particle a mass of f0(x) / ppc on
the mesh

We advance each particle using:

x(t+Δt) = x(t) + N(0, 1) * √(2 D Δt)

D:= Diffusion coefficient

N(0, 1):= Random normally distributed value
with zero mean and unit variance

We finish a time step by reweighing our
particle masses on the mesh to a cell, then
repeat

N:= Number of cells

mass:= Mass of a particle

for step in range(nsteps):

 particleCounter= np.zeros(N+1).astype(int)

 ran = np.random.normal(mean, variance, nParticles)

 for ip in range(nParticles):

 posn[ip] += ran[ip]*const

 cellIndex=mapPosnToCellIndex(posn[ip],dx,N,adjustOrigin)

 particleCounter[cellIndex] += 1

 dens= particleCounter*mass/dx

3

DSMC

Diffusion of a Slab

4

Some Limitations of DSMC

● Stochastic process leading to high levels of noise

○ Error with random sampling decreasing at 1/√(ppc)

○ Limited dynamic range for simulations

● Computationally expensive

○ Linear to number of total particles in simulation

● High memory usage

○ N * ppc * sizeof(float) bytes for a grid

○ Low cache hit rate

5

The QDS Algorithm (Without Euler Equations)

1. “Quietly” create the particles on the grid

using the initial or previous time step grid

moments

6

mij = ⍴i V wj / (∑j
ppc wj)

wj := Weight j-th value

aj := Abscissa j-th value

i 𝝐 {1 … N}; j 𝝐 {1 … ppc}

2. Advance the particles and linearly

distribute the mass values along the grid

3. Grid moments are calculated from

advanced particles, put back on the grid, and

then the particles are destroyed

x(t+Δt) = x(t) + ai √(2 D Δt)

mij = mij * Wij

Wij = if xi-1 < xnew ≤ xi := (xnew - xi-1) / (xi - xi-1)

if xi < xnew ≤ xi+1 := (xi+1 - xnew) / (xi+1 - xi)

else := 0

⍴i = mi / V

The QDS Algorithm (Without Euler Equations)

for step in range(nsteps):
 gridMass= np.zeros(N+1) # reset to zero
 # update particle position
 for ig in range(N):
 if dens_qds[ig] != 0.0:
 mass_qds= dens_qds[ig]*dx*weight/sum(weight)
 for ip in range(ppc_qds):
 xNew= xx[ig] + abscissa[ip]*const
 mycell= mapPosnToCellIndex(xNew,dx,N,adjustOrigin)
 if mycell>0 and mycell<N-1:
 gridMass[mycell-1] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell-2], xx[mycell-1], xx[mycell])
 gridMass[mycell] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell-1], xx[mycell], xx[mycell+1])
 gridMass[mycell+1] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell], xx[mycell+1], xx[mycell+2])
 dens_qds= gridMass / dx 7

Weight:= Hermite-Gaussian weight
values for ppc

Abscissa:= Hermite-Gaussian
abscissa values for ppc

The New and Improved Diffusion of a Slab

8

Why QDS?

● Computationally less expensive

● Precise values for mass, velocity, temperature, pressure, and more

○ And a low particle count (~4 particles per cell) is allowed due to elimination of

Stochastic processes

● Large dynamic and flexible range for simulations

○ Kinetic, fluid, and plasma models can all be simulated

● Linear memory usage to the number of cells

● Ability to conduct reliable multi-dimensional simulations

● Ability to fully parallelize the algorithm
9

Runtime Performance

10

Time for DSMC (s) Time for QDS (s) Factor Saved

Run 1 114.74 6.32 18.16

Run 2 114.37 6.29 18.17

Run 3 115.18 6.22 18.52

Run 4 125.06 6.01 20.80

Run 5 118.57 6.30 18.82

Run 6 120.34 6.55 18.37

Run 7 120.90 6.28 19.24

Run 8 121.34 6.12 19.84

Run 9 116.04 6.38 18.76

Run 10 122.76 7.27 16.89

● ppc (DSMC) := 1000

● ppc (QDS) := 5

● Diffusion coefficient:= 1.0

● N = 200

● t = 1s, Δt = 0.001s

● nsteps = 1000

Average time spent on DSMC
118.931s

Average time spent on QDS
6.3737s

11

QDS Algorithm With Euler Equations

𝛆i = (d-1) 𝜎vi
2 / 2

𝜎v := Velocity variance

d:= Degrees of freedom = 3 for 𝛾 = 5/3

mij = 𝚫x 𝝆i wj / Σ wj

vij = ui + qj √(2𝜎vi
2)

wj , qj := j-th weight and abscissa value for Hermite
Gaussian, respectively

i 𝝐 {1 … N}; j 𝝐 {1 … ppc}
12

1. “Quietly” create the particles on the

grid using the initial or previous

time step grid moments

At position xi on the mesh, each particle

has an internal specific energy, (𝛆i),
which correlates to the degrees of
freedom (𝛾 value). Along with each
particle’s mass and velocity values.

QDS Algorithm With Euler Equations

2. Advance the particles and

linearly distribute the particle

values onto the grid points

13

xij
new = xi + vij 𝚫t

mi = Σj
ppc mj Wij

pi = Σj
ppc mj vj Wij

Ei = Σj
ppc mj (½ vj

2 + 𝛆j)
 Wij

Wij = if xi-1 < xnew ≤ xi := (xnew - xi-1) / (xi - xi-1)

if xi < xnew ≤ xi+1 := (xi+1 - xnew) / (xi+1 - xi)

else := 0

QDS Algorithm With Euler Equations
for step in range(nsteps):
 massGrid = np.zeros(N+1)
 momGrid = np.zeros(N+1)
 enerGrid = np.zeros(N+1)
 for i in range(N+1):
 if (densGrid[i] != 0):
 for j in range(ppc_qds):
 vPart = velGrid[i] + abscissa[j] * (2.0*varGrid[i])**0.5
 mPart = densGrid[i] * dx * weight[j] / sum(weight)
 ePart = (deg-1) * varGrid[i] / 2.0
 xNew = xx[i] + vPart * dt
 newCell = mapPosToCell(xNew,dx,N,xmin)

 if (newCell > 0 and newCell < N-1):
 weighting = linearWeighting(xNew, xx[newCell-2], xx[newCell-1], xx[newCell])

 weighting2 = linearWeighting(xNew, xx[newCell-1], xx[newCell], xx[newCell+1])
 weighting3 = linearWeighting(xNew, xx[newCell], xx[newCell+1], xx[newCell+2])
 distribute(newCell, mPart, vPart, ePart, weighting, weighting2, weighting3)

14

QDS Algorithm With Euler Equations

distribute(newCell, mPart, vPart, ePart, w1, w2, w3):
 massGrid[newCell-1] += mPart * w1
 momGrid[newCell-1] += mPart * vPart * w1
 enerGrid[newCell-1] += mPart * w1 * (0.5 * (vPart**2.0) + ePart)

 massGrid[newCell] += mPart * w2
 momGrid[newCell] += mPart * vPart * w2
 enerGrid[newCell] += mPart * w2 * (0.5 * (vPart**2.0) + ePart)

 massGrid[newCell+1] += mPart * w3
 momGrid[newCell+1] += mPart * vPart * w3
 enerGrid[newCell+1] += mPart * w3 * (0.5 * (vPart**2.0) + ePart)

15

QDS Algorithm With Euler Equations

3. Density, velocity, velocity

variance, and other wanted

moments are calculated from

advanced particles, put on the

grid, and then the particles are

destroyed

16

𝝆i = mi / V

ui = pi / mi

𝜎vi
2 = (2Ei - ui

2) / (mi d)

Ti = ((Ei / mi) - ½(pi / mi)
2) * ((𝛄-1)/R)

Pi = 𝜎vi
2 * 𝝆i

R:= Ideal gas constant (8.3145 [J/(mol K)])

QDS for Shocktube of large magnitude differences

17

Initial conditions
𝝆L = 1.0 kg/m 𝝆R = 10-3 kg/m
TL = 103 K TR = 10-3 K
PL = 103 Pa PR = 10-6 Pa
vL, R = 0 m/s
Left is split from right at x = 0.3m

QDS for Shocktube of large magnitude differences

● Dynamic range can extensively be seen through a magnitude difference of 103, 106, and 109

for density, temperature, and pressure, respectively

○ The limits of this range have not been fully tested, yet continues to be accurate under

these large magnitudes

● All these values are double-precision floating point

○ We can accurately replicate the simulation values within machine accuracy

● Simulation operates under unit-less magnitude

○ User is able to simulate macroscopic and microscopic processes

18

Some Limitations of QDS

● Limited Δt due to algorithm stability.

Particles can’t rapidly move across the

grid so v can’t be too high

○ Δt ≤ Δx / v
○ Δt ≤ Δx / √(𝜎v

2 + v2)

● Currently limited to a first order

numerical scheme

○ Truncation of the second-order

and onward terms within the

linear differentiation

19

● Can we find a way to have unconditional

algorithm stability so that our higher

dimensional simulations are limited only by

physical accuracy?

● Is expansion to second or third schemes

computationally worth it?

Some Additional Features

● User specification of initial conditions

○ Density and temperature of the left and right side, split at the midpoint

○ Any simulation can take place within the Python script

● Simulations with normalized units for all values

● User molecule choice to run the simulation

○ Consists of the Z-value and the number of atoms that the user wants

○ Implemented using a stored hashmap that calculates molecule mass based on the

number of protons, neutrons, and electrons of a given atom

○ Mass value is determined by this user specification

20

Moving to Multi-Dimensional QDS

● A new separate set of particles and a corresponding

Hermite Gaussian quadrate is introduced for each

dimension

○ J-D problems require ppcJ particles

○ This corresponds to an even greater

computational save from DSMC

● We require 3J operations to accurately linearly

distribute our grid values

○ Comes from adjacent cell computations

21

Segment of the 3D QDS implementation

if (wz1!=0):
 if (wy1!=0):
 massGrid[xCell-1, yCell-1, zCell-1] += massPart * wx1 * wy1 * wz1
 massGrid[xCell , yCell-1, zCell-1] += massPart * wx2 * wy1 * wz1
 massGrid[xCell+1, yCell-1, zCell-1] += massPart * wx3 * wy1 * wz1

 if (wy2!=0):
 massGrid[xCell-1, yCell , zCell-1] += massPart * wx1 * wy2 * wz1
 massGrid[xCell , yCell , zCell-1] += massPart * wx2 * wy2 * wz1
 massGrid[xCell+1, yCell , zCell-1] += massPart * wx3 * wy2 * wz1

 if (wy3!=0):
 massGrid[xCell-1, yCell+1, zCell-1] += massPart * wx1 * wy3 * wz1
 massGrid[xCell , yCell+1, zCell-1] += massPart * wx2 * wy3 * wz1
 massGrid[xCell+1, yCell+1, zCell-1] += massPart * wx3 * wy3 * wz1

22

 z = 0 y = 0 x = 0

23

 z = 0 y = 0 x = 0

QDS vs DSMC - Diffusion of a 3-D sphere

Density slices

6 6 6

CUDA, Parallel Processing, and GPU Computation

● With no change to the actual QDS algorithm and CUDA implementation of QDS, we are

able to replicate our low-noise simulations

● Computing within Cuda kernels on NVIDIA GPUs has greatly decreased computational

time

○ With no hand optimized code as of now, we are able to achieve our benchmark goal

■ We seek to be < 1 ns/particle/time step

■ We are achieving an average of ~1 ns/particle/time step for total computational

time

● In general, multi-dimensional code is handled better

○ Each block represents a cell with threads being the particles

24

Main Code difference between Python/C++ and Cuda

if (wy1!=0 & wz1 != 0):
 massGrid[xCell-1, yCell-1, zCell-1]+=massPart*wx1*wy1*wz1
 massGrid[xCell, yCell-1, zCell-1]+=massPart*wx2*wy1*wz1
 massGrid[xCell+1, yCell-1, zCell-1]+=massPart*wx3*wy1*wz1

25

atomicAdd(&massGrid[getOffset(xCell-1, yCell-1, zCell-1, xN, yN)],

massPart*wx1*wy1*wz1);

atomicAdd(&massGrid[getOffset(xCell , yCell-1, zCell-1, xN, yN)],

massPart*wx2*wy1*wz1);

atomicAdd(&massGrid[getOffset(xCell+1, yCell-1, zCell-1, xN, yN)],

massPart*wx3*wy1*wz1);

26

Density slices for a 300 x 300 x 300 Cuda Simulation

Other C++/Cuda Optimizations/Changes

● We prefer to launch a kernel to do even simple tasks such as initializing values, resetting a

grid, or calculating the new grid values

○ For a 1,000,000 cell grid to do a simple division of two numbers within arrays. Run by

overhead.cu [4]

■ CPU time: 0.002s

■ CUDA Kernel time: 0.000015s

○ Cuda kernel becomes faster at a 2744 (143) cell grid

● Control flow statement reduction

○ Within the launched kernel, we avoid statements such as if, while, for, etc. to enable

full parallelism

27

Current Runtime Performance

28

Current Runtime Performance

● Apparent convergence close to

our goal of 1 ns/particle/time step

● Almost Linear N vs t

○ Small change at

150x150x150

● Initialization time barely

increases

● Computation time is what is

causing the runtime increases

● Hand optimizations needed

29

What’s Next for QDS and TriForce

● We would like to utilize multiple GPU cards to perform these calculations

○ Domain decomposition being our main method

○ NVLink will also play an important role

● Use MPI with CUDA to run QDS in parallel

● Extend our Euler equations within the GPU to retrieve other important simulation values

○ This comes with finding a better way of calculating values so that threads don’t

interrupt each other

● A simple buffer zone that would show us how mass and energy we lost

● Incorporate QDS into the main TriForce framework PIC methods within TF-Link

○ Open up to user specifications to be compatible with TriForce

30

Conclusion

QDS is a new simulation method that has shown to have many advantages over our previous PIC

methods, while introducing no new disadvantages. Its dynamic range appears to be limitless while

simulating any sort of experiment that a user wants to take place. This has allowed for precise

simulation values that a stochastic process could not replicate unless we drastically increase our

particle count. Additionally, this new create-and-destroy particle cycle allows a lower memory

usage while being computationally less expensive and easily improved using parallel processing

and GPU computation. We are able to expand our simulations efficiently while keeping the

precision needed. Overall, QDS will be able to be a new PIC method that TriForce will use to great

benefit!

31

Questions?

For any questions or additional information, please contact me at the following email address

Email: ssikorsk@u.rochester.edu

For any questions about TriForce and what we’re working on at large, contact Dr. Adam Sefkow

Email: adam.sefkow@rochester.edu

32

mailto:ssikorsk@u.rochester.edu
mailto:adam.sefkow@rochester.edu

References

[1] Albright et al. Kinetic plasma modeling with Quiet Monte Carlo Direct Simulation. Jan 2001.

[2] Albright et al. Quiet direct simulation of Eulerian Fluids. Jun 2001.

[3] Smith et al. An improved Quiet Direct Simulation method for Eulerian fluids using a second-order scheme. Dec 2008

[4] https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[5] https://github.com/sgsikorski/3dDiffusion

33

https://www.researchgate.net/publication/252390494_Kinetic_plasma_modeling_with_Quiet_Monte_Carlo_Direct_Simulation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/sgsikorski/3dDiffusion

