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Outline

● Our previous DSMC particle in cell (PIC) method and its problems

● The 1-D QDS algorithm base (in Python)

● The SOD Shocktube Problem solved using QDS

● Moving to multi-dimensional

● Enabling multi-threading and GPU computation with CUDA and 

NVIDIA GPU

● Where to go next

● Conclusion
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DSMC Algorithm

At t = 0, we initialize our density of a cell 
giving each particle a mass of f0(x) / ppc on 
the mesh

We advance each particle using:

x(t+Δt) = x(t) + N(0, 1) * √(2 D Δt)

D:= Diffusion coefficient

N(0, 1):= Random normally distributed value 
with zero mean and unit variance

We finish a time step by reweighing our 
particle masses on the mesh to a cell, then 
repeat

N:= Number of cells

mass:= Mass of a particle

for step in range(nsteps):

    particleCounter= np.zeros(N+1).astype(int)

    ran = np.random.normal(mean, variance, nParticles)

    for ip in range(nParticles):

       posn[ip] += ran[ip]*const

       cellIndex=mapPosnToCellIndex(posn[ip],dx,N,adjustOrigin)

       particleCounter[cellIndex] += 1

  

   dens= particleCounter*mass/dx
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DSMC

Diffusion of a Slab
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Some Limitations of DSMC

● Stochastic process leading to high levels of noise

○ Error with random sampling decreasing at 1/√(ppc)

○ Limited dynamic range for simulations

● Computationally expensive

○ Linear to number of total particles in simulation

● High memory usage

○ N * ppc * sizeof(float) bytes for a grid

○ Low cache hit rate
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The QDS Algorithm (Without Euler Equations)

1. “Quietly” create the particles on the grid 

using the initial or previous time step grid 

moments
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mij = ⍴i V wj / (∑j
ppc wj)

wj := Weight j-th value

aj := Abscissa j-th value

i 𝝐 {1 … N}; j 𝝐 {1 … ppc}

2. Advance the particles and linearly   

distribute the mass values along the grid

3. Grid moments are calculated from 

advanced particles, put back on the grid, and 

then the particles are destroyed

x(t+Δt) = x(t) + ai √(2 D Δt)

mij = mij * Wij 

Wij  = if xi-1 < xnew ≤ xi := (xnew - xi-1) / (xi - xi-1) 

if xi < xnew ≤ xi+1 := (xi+1 - xnew) / (xi+1 - xi)

else := 0

⍴i = mi / V



The QDS Algorithm (Without Euler Equations)

for step in range(nsteps):
    gridMass= np.zeros(N+1) # reset to zero
    # update particle position
    for ig in range(N):
        if dens_qds[ig] != 0.0:
            mass_qds= dens_qds[ig]*dx*weight/sum(weight)
            for ip in range(ppc_qds):
                xNew= xx[ig] + abscissa[ip]*const
                mycell= mapPosnToCellIndex(xNew,dx,N,adjustOrigin)
                if mycell>0 and mycell<N-1:
                   gridMass[mycell-1] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell-2], xx[mycell-1], xx[mycell  ])
                   gridMass[mycell  ] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell-1], xx[mycell  ], xx[mycell+1])
                   gridMass[mycell+1] += mass_qds[ip]*

linearWeighting(xNew, xx[mycell  ], xx[mycell+1], xx[mycell+2])
       dens_qds= gridMass / dx 7

Weight:= Hermite-Gaussian weight 
values for ppc

Abscissa:= Hermite-Gaussian 
abscissa values for ppc



The New and Improved Diffusion of a Slab

8



Why QDS?

● Computationally less expensive

● Precise values for mass, velocity, temperature, pressure, and more

○ And a low particle count (~4 particles per cell) is allowed due to elimination of 

Stochastic processes

● Large dynamic and flexible range for simulations

○ Kinetic, fluid, and plasma models can all be simulated

● Linear memory usage to the number of cells

● Ability to conduct reliable multi-dimensional simulations

● Ability to fully parallelize the algorithm 
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Runtime Performance
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Time for DSMC (s) Time for QDS (s) Factor Saved 

Run 1 114.74 6.32 18.16

Run 2 114.37 6.29 18.17

Run 3 115.18 6.22 18.52

Run 4 125.06 6.01 20.80

Run 5 118.57 6.30 18.82

Run 6 120.34 6.55 18.37

Run 7 120.90 6.28 19.24

Run 8 121.34 6.12 19.84

Run 9 116.04 6.38 18.76

Run 10 122.76 7.27 16.89

● ppc (DSMC) := 1000

● ppc (QDS) := 5

● Diffusion coefficient:= 1.0

● N = 200

● t = 1s, Δt = 0.001s

● nsteps = 1000

Average time spent on DSMC
118.931s

Average time spent on QDS
6.3737s
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QDS Algorithm With Euler Equations

𝛆i = (d-1) 𝜎vi
2 / 2

𝜎v := Velocity variance

d:= Degrees of freedom = 3 for 𝛾 = 5/3

mij = 𝚫x 𝝆i wj / Σ wj
 

vij = ui + qj √(2𝜎vi
2)

wj , qj := j-th weight and abscissa value for Hermite 
Gaussian, respectively

i 𝝐 {1 … N}; j 𝝐 {1 … ppc}
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1. “Quietly” create the particles on the 

grid using the initial or previous 

time step grid moments

At position xi on the mesh, each particle 

has an internal specific energy, (𝛆i),  
which correlates to the degrees of 
freedom (𝛾 value). Along with each 
particle’s mass and velocity values.



QDS Algorithm With Euler Equations

2. Advance the particles and 

linearly distribute the particle 

values onto the grid points
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xij
new = xi + vij 𝚫t

mi = Σj
ppc mj Wij

pi = Σj
ppc mj vj Wij

Ei = Σj
ppc mj (½ vj

2 + 𝛆j)
 Wij

Wij  = if xi-1 < xnew ≤ xi := (xnew - xi-1) / (xi - xi-1) 

if xi < xnew ≤ xi+1 := (xi+1 - xnew) / (xi+1 - xi)

else := 0



QDS Algorithm With Euler Equations
for step in range(nsteps):
       massGrid = np.zeros(N+1)
       momGrid = np.zeros(N+1)
       enerGrid = np.zeros(N+1)
       for i in range(N+1):
           if (densGrid[i] != 0):
               for j in range(ppc_qds):
                   vPart = velGrid[i] + abscissa[j] * (2.0*varGrid[i])**0.5
                   mPart = densGrid[i] * dx * weight[j] / sum(weight)
                   ePart = (deg-1) * varGrid[i] / 2.0
                   xNew = xx[i] + vPart * dt
                   newCell = mapPosToCell(xNew,dx,N,xmin)

                   if (newCell > 0 and newCell < N-1):
     weighting  = linearWeighting(xNew, xx[newCell-2], xx[newCell-1], xx[newCell  ])

                       weighting2 = linearWeighting(xNew, xx[newCell-1], xx[newCell  ], xx[newCell+1])
                       weighting3 = linearWeighting(xNew, xx[newCell  ], xx[newCell+1], xx[newCell+2])
                       distribute(newCell, mPart, vPart, ePart, weighting, weighting2, weighting3)
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QDS Algorithm With Euler Equations

distribute(newCell, mPart, vPart, ePart, w1, w2, w3):
    massGrid[newCell-1] += mPart * w1
    momGrid[newCell-1] += mPart * vPart * w1
    enerGrid[newCell-1] += mPart * w1 * (0.5 * (vPart**2.0) + ePart)

    massGrid[newCell] += mPart * w2
    momGrid[newCell] += mPart * vPart * w2
    enerGrid[newCell] += mPart * w2 * (0.5 * (vPart**2.0) + ePart)

    massGrid[newCell+1] += mPart * w3
    momGrid[newCell+1] += mPart * vPart * w3     
    enerGrid[newCell+1] += mPart * w3 * (0.5 * (vPart**2.0) + ePart)
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QDS Algorithm With Euler Equations

3. Density, velocity, velocity 

variance, and other wanted 

moments are calculated from 

advanced particles, put on the 

grid, and then the particles are 

destroyed
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𝝆i = mi / V

ui  = pi / mi 

𝜎vi
2 = (2Ei - ui

2) / (mi d)

Ti = ((Ei / mi) - ½(pi / mi)
2 ) * ((𝛄-1)/R)

Pi  = 𝜎vi
2 * 𝝆i

R:= Ideal gas constant (8.3145 [J/(mol K)] )



QDS for Shocktube of large magnitude differences
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Initial conditions
𝝆L = 1.0 kg/m 𝝆R = 10-3 kg/m
TL = 103 K TR = 10-3 K
PL = 103 Pa PR = 10-6 Pa
vL, R = 0 m/s
Left is split from right at x = 0.3m



QDS for Shocktube of large magnitude differences

● Dynamic range can extensively be seen through a magnitude difference of 103, 106, and 109 

for density, temperature, and pressure, respectively

○ The limits of this range have not been fully tested, yet continues to be accurate under 

these large magnitudes

● All these values are double-precision floating point

○ We can accurately replicate the simulation values within machine accuracy

● Simulation operates under unit-less magnitude

○ User is able to simulate macroscopic and microscopic processes
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Some Limitations of QDS

● Limited Δt due to algorithm stability. 

Particles can’t rapidly move across the 

grid so v can’t be too high

○ Δt  ≤ Δx / v
○ Δt  ≤ Δx / √(𝜎v

2 + v2)

● Currently limited to a first order 

numerical scheme

○ Truncation of the second-order 

and onward terms within the 

linear differentiation 
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● Can we find a way to have unconditional 

algorithm stability so that our higher 

dimensional simulations are limited only by 

physical accuracy?

● Is expansion to second or third schemes 

computationally worth it?



Some Additional Features

● User specification of initial conditions

○ Density and temperature of the left and right side, split at the midpoint

○ Any simulation can take place within the Python script

● Simulations with normalized units for all values

● User molecule choice to run the simulation

○ Consists of the Z-value and the number of atoms that the user wants

○ Implemented using a stored hashmap that calculates molecule mass based on the 

number of protons, neutrons, and electrons of a given atom

○ Mass value is determined by this user specification
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Moving to Multi-Dimensional QDS

● A new separate set of particles and a corresponding 

Hermite Gaussian quadrate is introduced for each 

dimension 

○ J-D problems require ppcJ particles

○ This corresponds to an even greater 

computational save from DSMC

● We require 3J operations to accurately linearly 

distribute our grid values

○ Comes from adjacent cell computations

21



Segment of the 3D QDS implementation

if  (wz1!=0):
    if (wy1!=0):
        massGrid[xCell-1, yCell-1, zCell-1] += massPart * wx1 * wy1 * wz1
        massGrid[xCell  , yCell-1, zCell-1] += massPart * wx2 * wy1 * wz1
        massGrid[xCell+1, yCell-1, zCell-1] += massPart * wx3 * wy1 * wz1

    if (wy2!=0):
        massGrid[xCell-1, yCell  , zCell-1] += massPart * wx1 * wy2 * wz1
        massGrid[xCell  , yCell  , zCell-1] += massPart * wx2 * wy2 * wz1
        massGrid[xCell+1, yCell  , zCell-1] += massPart * wx3 * wy2 * wz1

    if (wy3!=0):
        massGrid[xCell-1, yCell+1, zCell-1] += massPart * wx1 * wy3 * wz1
        massGrid[xCell  , yCell+1, zCell-1] += massPart * wx2 * wy3 * wz1
        massGrid[xCell+1, yCell+1, zCell-1] += massPart * wx3 * wy3 * wz1
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      z = 0  y = 0   x = 0
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     z = 0  y = 0   x = 0

QDS vs DSMC - Diffusion of a 3-D sphere

Density slices
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CUDA, Parallel Processing, and GPU Computation

● With no change to the actual QDS algorithm and CUDA implementation of QDS, we are 

able to replicate our low-noise simulations 

● Computing within Cuda kernels on NVIDIA GPUs has greatly decreased computational 

time

○ With no hand optimized code as of now, we are able to achieve our benchmark goal

■ We seek to be < 1 ns/particle/time step

■ We are achieving an average of ~1 ns/particle/time step for total computational 

time

● In general, multi-dimensional code is handled better

○ Each block represents a cell with threads being the particles
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Main Code difference between Python/C++ and Cuda

if (wy1!=0 & wz1 != 0):
  massGrid[xCell-1, yCell-1, zCell-1]+=massPart*wx1*wy1*wz1
  massGrid[xCell,   yCell-1, zCell-1]+=massPart*wx2*wy1*wz1
  massGrid[xCell+1, yCell-1, zCell-1]+=massPart*wx3*wy1*wz1
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atomicAdd(&massGrid[getOffset(xCell-1, yCell-1, zCell-1, xN, yN)],   

massPart*wx1*wy1*wz1);

atomicAdd(&massGrid[getOffset(xCell  , yCell-1, zCell-1, xN, yN)], 

massPart*wx2*wy1*wz1);

atomicAdd(&massGrid[getOffset(xCell+1, yCell-1, zCell-1, xN, yN)], 

massPart*wx3*wy1*wz1);
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Density slices for a 300 x 300 x 300 Cuda Simulation



Other C++/Cuda Optimizations/Changes

● We prefer to launch a kernel to do even simple tasks such as initializing values, resetting a 

grid, or calculating the new grid values

○ For a 1,000,000 cell grid to do a simple division of two numbers within arrays. Run by 

overhead.cu [4] 

■ CPU time: 0.002s

■ CUDA Kernel time: 0.000015s

○ Cuda kernel becomes faster at a 2744 (143) cell grid

● Control flow statement reduction

○ Within the launched kernel, we avoid statements such as if, while, for, etc. to enable 

full parallelism

27



Current Runtime Performance
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Current Runtime Performance

● Apparent convergence close to  

our goal of 1 ns/particle/time step

● Almost Linear N vs t 

○ Small change at 

150x150x150

● Initialization time barely 

increases

● Computation time is what is 

causing the runtime increases

● Hand optimizations needed
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What’s Next for QDS and TriForce

● We would like to utilize multiple GPU cards to perform these calculations

○ Domain decomposition being our main method

○ NVLink will also play an important role

● Use MPI with CUDA to run QDS in parallel

● Extend our Euler equations within the GPU to retrieve other important simulation values

○ This comes with finding a better way of calculating values so that threads don’t 

interrupt each other

● A simple buffer zone that would show us how mass and energy we lost

● Incorporate QDS into the main TriForce framework PIC methods within TF-Link

○ Open up to user specifications to be compatible with TriForce
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Conclusion

QDS is a new simulation method that has shown to have many advantages over our previous PIC 

methods, while introducing no new disadvantages. Its dynamic range appears to be limitless while 

simulating any sort of experiment that a user wants to take place. This has allowed for precise 

simulation values that a stochastic process could not replicate unless we drastically increase our 

particle count. Additionally, this new create-and-destroy particle cycle allows a lower memory 

usage while being computationally less expensive and easily improved using parallel processing 

and GPU computation. We are able to expand our simulations efficiently while keeping the 

precision needed. Overall, QDS will be able to be a new PIC method that TriForce will use to great 

benefit!
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Questions?

For any questions or additional information, please contact me at the following email address

Email: ssikorsk@u.rochester.edu

For any questions about TriForce and what we’re working on at large, contact Dr. Adam Sefkow

Email: adam.sefkow@rochester.edu

32

mailto:ssikorsk@u.rochester.edu
mailto:adam.sefkow@rochester.edu


References

[1] Albright et al. Kinetic plasma modeling with Quiet Monte Carlo Direct Simulation. Jan 2001.

[2] Albright et al. Quiet direct simulation of Eulerian Fluids. Jun 2001.

[3] Smith et al. An improved Quiet Direct Simulation method for Eulerian fluids using a second-order scheme. Dec 2008

[4] https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html 

[5] https://github.com/sgsikorski/3dDiffusion 

33

https://www.researchgate.net/publication/252390494_Kinetic_plasma_modeling_with_Quiet_Monte_Carlo_Direct_Simulation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/sgsikorski/3dDiffusion

